Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Đặt \(E_n=n^3+3n^2+5n\)
- Với n=1 thì E1=9 chia hết 3
- Giả sử En đúng với \(n=k\ge1\) nghĩa là:
\(E_k=k^3+3k^2+5k\) chia hết 3 (giả thiết quy nạp)
- Ta phải chứng minh Ek+1 chia hết 3,tức là:
Ek+1=(k+1)3+3(k+1)2+5(k+1) chia hết 3
Thật vậy:
Ek+1=(k+1)3+3(k+1)2+5(k+1)
=k3+3k2+5k+3k2+9k+9=Ek+3(k2+3k+3)
Theo giả thiết quy nạp thì Ek chia hết 3
ngoài ra 3(k2+3k+3) chia hết 3 nên Ek chia hết 3
=>Ek chia hết 3 với mọi \(n\in N\)*
Ta có: \(A=4^{n+3}+4^{n+2}-4^{n+1}-4^n\)
\(A=4^{n-1}.4^4+4^{n-1}.4^3-4^{n-1}.4^2-4^{n-1}.4\)
\(A=4^{n-1}\left(4^4+4^3-4^2-4\right)=4^{n-1}.300\).
Vậy .......... (dpcm)
\(A=4^{n+3}+4^{n+2}-4^{n+1}-4^n\)
\(=4^{n-1}.4^4+4^{n-1}.4^3-4^{n-1}.4^2-4^{n-1}.4\)
\(=4^{n-1}\left(4^4+4^3-4^2-4\right)\)
\(=4^{n-1}.300⋮300\)
\(\Rightarrow A⋮300\left(đpcm\right)\)
Vậy...
1, Ta có: 3n+2 - 2n+2 + 3n - 2n
= 3n( 32 +1) - 2n(22 + 1) = 10.3n - 5.2n
do n nguyên dương nên : 10.3n chia hết cho 10 và 5.2n chia hết cho 10
Vậy 3n+2 - 2n+2 + 3n - 2n chia hết cho 10 với mọi n thuộc N*
1) Ta có: A = 3n+2 - 2n+2 + 3n - 2n
=> A = 3n+2 + 3n - (2n+1 + 2n)
=> A = 3n(32 + 1) - 2n(22 + 1)
=> A = 3n.10 - 2n.5
ta thấy : 2nlà 1 số chẵn => 2n.5 \(⋮10\)
3n.10\(⋮10\)
=> \(A⋮10\) với mọi n E N* (đpcm)
2) a) ta có:
8.2n + 2n+1 = 2n( 8 + 2 ) = 2n.10 \(⋮10\)
=> 8.2n + 2n+1 có tận cùng = 0
b) ta có:
3n+3 - 2.3n + 2n+5 - 7.2n = 3n(33 - 2) + 2n(25 - 7)
= \(3^n.25-2^n.25\)
ta thấy: \(3^n.25⋮25\\ 2^n.25⋮25\\ \Rightarrow3^n.25+2^n.25⋮25\)
vậy 3n+3 - 2.3n + 2n+5 - 7.2n chia hết cho 25
a) 3-2 . 34 . 3n = 37
=> 3-2+4+n = 37
=> 32+n = 37
=> 2 + n = 7
=> n = 5
Vậy n = 5
a) 3-2. 34.3n = 37
3-2 + 4 + n = 37
32 + n = 37
2 + n = 7
n = 5
Vậy n = 5
b) 2-1.2n + 4.2n = 9.25
2n(2-1 + 4) = 9.25
2n. \(\frac{9}{2}\) = 9.25
2n = 9.25 : \(\frac{9}{2}\)
2n = 64
2n = 26
n = 6
Vậy n = 6
c) 32 < 2n < 128
25 < 2n < 27
5 < n < 7
=> n = 6
Vậy n = 6
d) 44 \(\leq \) 4n \(\leq \) 4096
44 \(\leq \) 4n \(\leq \) 46
4 \(\leq \) n \(\leq \) 6
=> n = 5
Vậy n = 5
mk ko chắc câu d nhé
4
Ta có:
\(A=4n\left(1+4+4^2+4^3+...+4^{20}\right)\)
=\(4n\left(\left(4+4^2+4^3\right)+4^3\left(4+4^2+4^3\right)+...+\left(4^{19}+4^{20}+1\right)\right)\)
Hình như ko chia hết
Mình được người khác vd là 1+4+42=21×4=84
mà 84 chia hết cho 84 mà mình cũng ko hiểu lắm