Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
Để \(3+\frac{5}{n-1}\) là số nguyên <=> \(\frac{5}{n-1}\) là số nguyên
=> n - 1 thuộc Ư(5) = { - 5; - 1; 1; 5 }
Ta có bảng sau :
n - 1 | - 5 | - 1 | 1 | 5 |
n | - 4 | 0 | 2 | 6 |
Vậy n = { - 4 ; 0 ; 2 ; 6 }
bai 3
\(A=\frac{10^{2004}+1}{10^{2005}+1}\)
\(10A=\frac{10^{2004}+10}{10^{2005}+1}\)
\(10A=1\frac{9}{10^{2005}+1}\)
\(B=\frac{10^{2005}+1}{10^{2006}+1}\)
\(10B=\frac{10^{2005}+10}{10^{2006}+1}\)
\(10B=1\frac{9}{10^{2006}+1}\)
Vì \(1\frac{9}{10^{2005}+1}>1\frac{9}{10^{2006}+1}\)
\(\Rightarrow10A>10B\)
\(\Rightarrow A>B\)
bai 4
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^8}\)
\(\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+....+\frac{1}{3^9}\)
\(A-\frac{1}{3}A=\frac{1}{3}-\frac{1}{3^9}\)
a,B = 1+4+42+...+411
=(1+4)+(42+43)+...+(410+411)
=5+42(1+4)+...+410(1+4)
=5+42.5+...+410.5
=5(1+42+...+410) chia hết cho 5
b, -Nếu p = 2 => p+2=2+2=4 là hợp số (loại)
-Nếu p=3 => p+2=5; p+2=7 là số nguyên tố (thỏa mãn)
-Nếu p > 3 thì p không chia hết cho 3
+)p=3k+1 => p+2=3k+1+2=3k+3 là hợp số (loại)
+) p=3k+2 => p+4=3k+2+4=3k+6 là hợp số (loại)
Vậy p=3
- B=(1/2).(2/3).(3/4)....(2010/2011).(2011/2012)
B=(1.2.3....2011)/(2.3.4....2012)
B=1/2012
Ta có \(A=4^{2005}-4^{205}\)
\(=\left(...4\right)-\left(...4\right)\)
\(=\left(...0\right)⋮10\)
\(\Rightarrow\frac{A}{10}\in Z\)