K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

\(A=4+4^2+4^3...+4^{99}+4^{100}\)

\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{99}+4^{100}\right)\)

\(A=\left(4.1+4.4\right)+\left(4^3.1+4^3.4\right)+...+\left(4^{99}.1+4^{99}.4\right)\)

\(A=4.5+4^3.5+...+4^{99}.5\)

\(A=5.\left(4+4^3+...+4^{99}\right)⋮5\left(ĐPCM\right)\)

31 tháng 8 2018

\(A=4+4^2+4^3+...+4^{99}+4^{100}\)

\(A=4\cdot\left(1+4\right)+4^3\cdot\left(1+4\right)+...+4^{99}\cdot\left(1+4\right)\)

\(A=4\cdot5+4^3\cdot5+...+4^{99}\cdot5\)

\(A=5\cdot\left(4+4^3+...+4^{99}\right)⋮5\left(đpcm\right)\)

6 tháng 2 2016

a ) S = 4 + 42 + 43 + 44 + ..... + 499 + 4100

S = ( 4 + 42 ) + ( 43 + 44 ) + .... + ( 497 + 498 ) + ( 499 + 4100 )

⇒ S = 4.( 1 + 4 ) + 43.( 1 + 4 ) + ...... + 497.( 1 + 4 ) + 499.( 1 + 4 )

⇒ S = 4.5 + 43.5 + ..... + 497.5 + 499.5

⇒ S = 5.( 4 + 43 + ..... + 497 + 499 )

Vì 5 ⋮ ⋮ 5 ( đpcm )

Câu b tương tự .

 

6 tháng 2 2016

Làm theo công thức nhé!!

5 tháng 12 2016

A = 4 +42 + 43 + 44 + 45 +...+ 499 + 4100

    = (4 + 42) + (43 + 44) + (45 + 46) +...+ (499 + 4100)

    = 4 (1 + 4) +43 ( 1+ 4 ) + 45 ( 1 + 4 )+...+ 499 (1 + 4)

    = (1 + 4).(4 + 43 + 45 +...+ 499)

     = 5 ( 4 + 43 + 45 +...+499

Vì A có một thừa số là 5 nên chia hết cho 5

2 tháng 2 2016

\(S=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{99}+4^{100}\right)\)

\(=4.\left(1+4\right)+4^3.\left(1+4\right)+...+4^{99}.\left(1+4\right)\)

\(=4.5+4^3.5+...+4^{99}.5\)

\(=5.\left(4+4^3+...+4^{99}\right)\text{chia hết cho 5}\left(đpcm\right)\)

2 tháng 2 2016

bai toan nay minh khong biet

16 tháng 12 2016

nhận xét: 22+23 + 24 +25 = 60, 60 chia hết cho 5

Khi đó, A= (22+23 + 24 +25) + (26 + 27 + 28 + 29) +.....+ (297 +298 +299+2100)

= (22+23 + 24 +25) + 24 (22+23 + 24 +25)+.......+ 296 (22+23 + 24 +25)

= 1+24 + ....+296. (22+23 + 24 +25) chia hết cho 60 ; 60 chia hết cho 5

=> A chia hết cho 5

Vậy A chia hết cho 5

 

18 tháng 12 2016

thank you

 

10 tháng 8 2020

Bạn vào câu hỏi tương tự là có nha !

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

10 tháng 8 2020

Ko cs đầy đủ bn ơi!

\(A=2+2^2+2^3+2^4+2^5+...+2^{100}\)

\(A=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(A=62+...+2^{95}.62\)

\(A=62\left(1+...+9^{95}\right)\)chia hét 62 

\(\Rightarrow dpcm\)

8 tháng 1 2018

\(A=2+2^2+.........+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+.........+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(2+2^2+2^3+2^4\right)+.....+2^{96}\left(2+2^2+2^3+2^4\right)\)

\(=2.62+.......+2^{96}.62\)

\(\Leftrightarrow62\left(2+......+2^{96}\right)⋮62\left(đpcm\right)\)

7 tháng 12 2014

a, 3S= 3+ 3^2 +3^3+....+3^2014+3^2015

3S-S=(3+3^2+......+3^2015)-(S=3^0 +3^1 +3^2 + . . . +3^2014)

2S=3^2015-3^0

b,Đề bị sai hay sao????.Thui để sau sẽ có người giúp cậu.Bye Bye!!!!!!!

9 tháng 12 2014

Tui trả lời câu b nè:

S=(3+3^2+3^4)+...+(3^2012+3^2013+3^2014)

Vì máy tính ko viết được dấu nhân nên tui nói bằng lời còn bạn tự kiểm tra nha

Các  tổng trên chia hết cho 7 nên S chia hết cho 7

Đảm bảo là đúng!!! :)