Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
minh chi lam dc cau a thoi nha nhung hay t i c k cho minh
3 + 32 = 12 chia het cho 4 3 + 32 + 33 + .......+39 + 310 = 30 .[ 3+32 ] + 32 . [ 3 + 32 ] + ....+38 . [ 3 + 32 ]
=30 . 12 + 32 . 12 +.....+ 38 . 12 = 12.[30 + 32 +....+ 38 ]
vi 12 chia het cho 4 nen 12 nhan voi so tu nhien nao thi so do cung chia het cho 4 nen A chia het cho 4
a giải luôn cho e nhé
7A=7+72+73+...+72008
7A-A=[7+72+73+...+72008]-[1+7+72+..+72007]
6A=72008-1
A=72008-1/6
b,Tương tư nhân B vs 4 là ra
Mình chỉ trả lời được 2 câu đầu thôi nhé:
a.A= \(1+7+7^2+7^3+...+7^{2007}\)
A.7 = \(7+7^2+7^3+7^4+...+7^{2008}\)
A7-A = \(\left(7+7^2+7^3+7^4+...+7^{2008}\right)-\left(1+7+7^2+7^3+...+7^{2007}\right)\)
A6 =\(7^{2008}-1\)
\(\Rightarrow A=7^{2008}-1\)
Câu còn lại làm tương tự bạn nhé
+)A=2^1+2^2+2^3+2^4+...+2^2010
=>A=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2009+2^2010)
=>A=6+2^2.(2+2^2)+2^4.(2+2^2)+...+2^2008(2+2^2)
=>A=6+2^2.6+2^4.6+...+2^2008.6
=>A=6.(1+2^2+2^4+...+2^2008)
=>A=3.2.(1+2^2+2^4+...+2^2008)
=>A chia hết cho 3
A=2+2^2+2^3+2^4+...+2^2010
A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^2008+2^2009+2^2010)
A=2.(1+1+2^2)+2^4(1+2+2^2)+2^7.(1+2+2^4)+...+2^2008.(1+2+2^2)
A=2.7+2^4.7+2^7.7+...+2^2008.7
A=7.(2+2^4+2^7+...+2^2008)
=> A chia hết cho 7
các phần khác làm tương tự
A = 21 + 22 + 23 + 24 + .... + 22009 + 22010
=> A = ( 21 + 22 ) + ( 23 + 24 ) + .... + ( 22009 + 22010 )
=> A = 21.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 22009.( 1 + 2 )
=> A = 21.3 + 23.3 + .... + 22009.3
=> A = 3.( 21 + 23 + .... + 22009 )
Vì 3 ⋮ 3 => A ⋮ 3 ( đpcm )
A = 21 + 22 + 23 + 24 + 25 + 26 + .... + 22007 + 22008 + 22009
=> A = ( 21 + 22 + 23 ) + ( 24 + 25 + 26 ) + .... + ( 22007 + 22008 + 22009 )
=> A = 21.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 22007.( 1 + 2 + 2.2 )
=> A = 21.7 + 24.7 + .... + 22007.7
=> A = 7.( 21 + 24 + .... + 22007 )
Vì 7 ⋮ 7 => A ⋮ 7 ( đpcm )
Các ý sau tương tự .
A = \(4+4^2+4^3+4^4+...+4^{99}+4^{100}\)
A = \(\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{99}+4^{100}\right)\)
A x 2 = \(\left(4\cdot2+4\cdot8\right)+\left(4^3\cdot2+4^4\cdot8\right)+...+\left(4^{99}\cdot2+4^{100}\cdot8\right)\)
A x 2 = \(10\cdot\left(4+4^2+4^3+4^4+...+4^{99}+4^{100}\right)\)
A x 2 =\(20\cdot\left(4+4^1+4^2+4^3+4^4+...+4^{99}+4^{100}\right)\)
Suy ra A = \(10\cdot\left(4+4^1+4^2+4^3+4^4+...+4^{99}+4^{100}\right)\)
Vậy A là số chia hết cho 10
A = 4 + 42 + 43 + 44 + ... + 4100
A = ( 4 + 42 ) + ( 43 + 44 ) + ... + ( 499 + 4100 )
A = ( 4 + 42 ) x 1 + ( 4 + 42 ) x 42 + ... + ( 4 + 42 ) x 499
A = 20 x 1 + 20 x 42 + ... + 20 x 499
A = 20 x ( 1 + 42 + ... + 499 )
A = 10 x 2 x ( ... ) \(⋮\)10
Vậy A chia hết cho 10 ( đpcm ) .