K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2015

A=(3+3^2+3^3+3^4+...+3^152+3^153+3^154+3^155)

A=3.(1+3+3^2+3^3+3^4)+...+3^152.(1+3+3^2+3^3+3^4)

A=3.121+...+3^152.121

A=121.(3+...+3^152)

Vì 121 chia hết cho 121

nên 121.(3+3^152)chia hết cho 121

hay Achia hết cho 121

TICK CHO MÌNH NHEN MÌNH CHƯA CÓ ĐIỂM HỎI ĐÁP.THANKS

 

29 tháng 11 2016

1.

\(A=7+7^2+7^3+...+7^{78}\)

\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{77}+7^{78}\right)\)

\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{77}\left(1+7\right)\)

\(=7\cdot8+7^3\cdot8+...+7^{77}\cdot8\)

\(=\left(7+7^3+...+7^{77}\right)\cdot8\) chia hết cho 8

Vậy A chia hết cho 8 (đpcm)

 

 

29 tháng 11 2016

\(A=3+3^2+3^3+...+3^{155}\)

\(=\left(3+3^2+3^3+3^4+3^5\right)+...+\left(3^{151}+3^{152}+3^{153}+3^{154}+3^{155}\right)\)

\(=3\left(1+3+3^2+3^3+3^4\right)+...+3^{151}\left(1+3+3^2+3^3+3^4\right)\)

\(=\left(3+...+3^{151}\right)\cdot121\) chia hết cho 121

Vậy A chia hết cho 121 (đpcm)

5 tháng 1 2017

minh chi lam dc cau a thoi nha nhung hay t i c k cho minh

3 + 32 = 12 chia het cho 4  3 + 32 + 33 + .......+39 + 310 = 30 .[ 3+32 ] + 32 . [ 3 + 3] + ....+38 . [ 3 + 32 ]

=30 . 12 + 3 . 12 +.....+ 38 . 12 = 12.[3+ 32 +....+ 38 ] 

vi 12 chia het cho 4 nen 12 nhan voi so tu nhien nao thi so do cung chia het cho 4 nen A chia het cho 4

10 tháng 12 2017

hghjhgjhgjh

15 tháng 12 2016

ta co:

=(5+5^2+5^3)+(5^4+5^5+5^6)+.........+(5^2011+5^2012+5^2013)

=155+5^4*(5+5^2+5^3)+........+5^2011*(5+5^2+5^3)

=155+5^4*155+5^2011*155

=155*(5^4+5^2011+1)

vì 155 chia hết cho 155=>155*(5^4+5^2011+1) chia hết cho 155

vậy A chia hết cho 155

19 tháng 1 2017

Ta có: 155 = 5.31 ta chứng minh A chia hết cho 5 và 31

+ Chứng minh A chia hết cho 5

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+4+8\right)+2^5\left(1+2+4+8\right)+...+2^{97}\left(1+2+4+8\right)\)

\(=15\left(2+2^5+...+2^{97}\right)=3.5.\left(2+2^5+...+2^{97}\right)\)

\(\Rightarrow A⋮5\left(1\right)\)

+ Chứng minh A chia hết cho 31

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+4+8+16\right)+2^6\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)

\(=31\left(2+2^6+...+2^{96}\right)\)

\(\Rightarrow A⋮31\left(2\right)\)

Từ (1) và (2) \(\Rightarrow A⋮\left(31.5\right)hayA⋮155\)

24 tháng 8 2017

  Dễ thấy a1b1 = 3.3 = 9.1 = c1d1 và  a2b2 = 2.(-5) =(-1).10 =c2d2

P(x) = (9x2 – 9x – 10)(9x2  + 9x – 10) + 24x2

Đặt y = (3x +2)(3x – 5) = 9x2 – 9x – 10 thì P(x) trở thành:

          Q(y) = y(y + 10x) = 24x2

          Tìm  m.n = 24x2 và  m + n = 10x ta chọn được  m = 6x , n = 4x

Ta được: Q(y) = y2 + 10xy + 24x2

                                = (y + 6x)(y + 4x)

Do đó:     P(x) = ( 9x2 – 3x – 10)(9x2 – 5x – 10).

10 tháng 11 2019

a)Ta có:A=3+32+33+...+318

            =(3+32)+(33+34)+...+(317+318)

            =3(1+3)+33(1+3)+...+317(1+3)

            =3.4+33.4+...+317.4

Vì 4\(⋮\)4 nên 3.4+33.4+...+317.4\(⋮\)4

hay A\(⋮\)4

Ta có:A=3+32+33+...+318

            =(3+32+33)+(34+35+36)+...+(316+317+318)

            =3(1+3+32)+34(1+3+32)+...+316(1+3+32)

            =3.13+34.13+...+316.13

Vì 13\(⋮\)13 nên 3.13+34.13+...+316.13\(⋮\)13

hay A\(⋮\)13

Vậy A chia hết cho 4, 13.

10 tháng 11 2019

A=3+32+33+...+318

A=(3+32)+(33+34)+...+(317+318)

A=3(1+3)+33(1+3)+...+317(1+3)

A=3x4+33x4+...+317x4

A=4x(1+33+...+317) chia hết cho 4

24 tháng 8 2017

a) (x-14):2=24-3

(x-14):2 = 13

x-14 = 13.2

x-14 = 26

x = 26 + 14

x = 40

b) x572 = x <=> x = 1 hoặc 0 

24 tháng 8 2017

a, b làm như trên nha, còn mấy bìa còn lại :

 M=1+2+22+...+211 

M = \(\left(1+2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}+2^{11}\right)\)

M = (1+2+4+8+16+32) + 26( 1 + 2 + 22+23+24+25)

M = 63 + 26.63

M = 63 ( 1+ 26)

M= 9.7 (1 + 2^6) chia hết cho 9 => M chia hết cho 9

S=3 + 32 +33 +.....+ 39

S = \(\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)\)

S = \(3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^7\left(1+3+3^2\right)\)

S= 3. 13 + 3^4.13 + 3^7.13

S= 13 ( 3 +3^4+3^4) chia hết cho 13 => S chia hết cho 13

M= 2+ 2+ 23+....+210 

M= \(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)

M = \(2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

\(M=2.3+2^3.3+...+2^9.3\)
M = 3( 2+ 2^3 +...+ 2^9) chia heets cho 3

=> M chia hết cho 3

A=  7+ 72 + 73 +.....+78 

A= \(\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)

A= \(7\left(1+7+7^2+7^3\right)+7^5\left(1+7+7^2+7^3\right)\)

A= 7. 400 + 7^5 . 400

A = 400( 7+7^5)

A = 5 . 80 ( 7+7^5) chia hết cho 5 => A chia hết cho 5