Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{21}=3^{20}.3=\left(3^2\right)^{10}.3=9^{10}.3\)
\(2^{31}=2^{30}.2=\left(2^3\right)^{10}.2=8^{10}.2\)
\(9^{10}.3>8^{10}.2\Rightarrow3^{21}>2^{31}\)
Vậy \(3^{21}>2^{31}\)
a) 3500 = (35)100 = 243100
5300 = (53)100 =125100
Vì 125100 < 243100 nên 5300 < 3500
b) 2714 = (33)14 = 342
24310 = (35)10 = 350
Vì 342 < 350 nên 2714 < 24310
a) so sánh : 3^23 và 5^15
ta có 3^23=3^21.3^2=(3^3)^7.9=27^7.9
5^15=5^14.5=(5^2)^7.5=25^7.5
vì 27^7>25^7;9>5 nên 27^7.9>25^7.5
vậy 3^23>5^15
b) So sánh : 2^31 và 3^21
3^21 = (3^7)^3 = 2187^3
2^31 < 2^33 = (2^11)^3 = 2048^3
==> 3^21 > 2^33 > 2^31
\(3^{23}=3^{24}:3=\left(3^3\right)^8:3=\frac{27^8}{3}>\frac{25^8}{3}>\frac{\left(5^2\right)^8}{5}=\frac{5^{16}}{5}=5^{15}\Rightarrow3^{23}>5^{15}\)
231 = 230.2 = (23)10 .2 = 810 .2 < 910.2 < (32)10 .3 = 320.3 = 321 => 231 < 321
Ta có:
\(3^{21}=3.3^{20}=3.9^{10}\)
\(2^{31}=2.2^{30}=2.8^{10}\)
Vì \(2.8^{10}<3.9^{10}\)
=>\(2^{31}<3^{21}\)
a.
$5^{75}=(5^5)^{15}=3125^{15}$
$7^{60}=(7^4)^{15}=2401^{15}$
Mà $3125> 2401$ nên $5^{75}> 7^{60}$
b.
$3^{21}=3.3^{20}=3.9^{10}$
$2^{31}=2.2^{30}=2.8^{10}< 3. 9^{10}$
$\Rightarrow 3^{21}> 2^{31}$
321=320.3=(32)10.3=910.3
231=230.2=(23)10.2=810.2
910.3>810.2 =>a>b
vậy a>b