K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

hình như sai đề

phải là a2+b2+2ab=>(a+b)2

7 tháng 4 2021

bó tay TcT

7 tháng 12 2018

a, \(\left(a+1\right)^2\ge4a\)

\(\Leftrightarrow a^2+2a+1\ge4a\)

\(\Leftrightarrow a^2-2a+1\ge0\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)(Luôn đúng)

b, Áp dụng bđt Cô-si

\(a+1\ge2\sqrt{a}\)

\(b+1\ge2\sqrt{b}\)

\(c+1\ge2\sqrt{c}\)

\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

                                                               \(=8\sqrt{abc}=8\)(ĐPCM)

Dấu "=" khi a = b = c =1

7 tháng 12 2018

a, \(\left(a-1\right)^2\ge0\)

\(\Rightarrow a^2-2a+1\ge0\)

\(\Leftrightarrow a^2+2a+1>4a\)

\(\Leftrightarrow\left(a+1\right)^2\ge4a.\)

b, Áp dụng bất đẳng thức trên ta có :

( a + 1 )2 > 4a \(\Leftrightarrow\) \(\sqrt{\left(a+1\right)^2}\ge2\sqrt{a}\)

mà \(\sqrt{\left(a+1\right)^2}=\left|a+1\right|\)

Do a > 0 nên a + 1 > 0. Vậy | a + 1 | = a + 1.

Khi đó : a + 1 > \(2\sqrt{a}\)

Tương tự ta có : 

b + 1 > \(2\sqrt{b}\)và c + 1 > \(2\sqrt{c}\)

=> ( a + 1 ) ( b + 1 ) ( c + 1 ) > \(8\sqrt{abc}=8.\)

\(2a^2+2b^2=5ab\)

\(\leftrightarrow2a^2-4ab-ab+2b^2=0\leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\leftrightarrow\orbr{\begin{cases}b=2a\\a=2b\end{cases}}\)

TH1 : \(b=2a\)

\(M=\frac{a+b}{a-b}=\frac{a+2a}{a-2a}=\frac{3a}{-a}=-3\)

Chỉ xảy ra ở TH1 vì \(b>a>0\)nên b=2a

24 tháng 9 2017

Mk ko biết  kb nha 

21 tháng 3 2018

Ta có: \(a^6+b^6\)

Mà ta có: \(\left(a^4+b^4\right)\cdot ab\)

Suy ra: \(a^6+b^6\ge\left(a^4+b^4\right)\cdot ab=a^5\cdot b+b^5\cdot a\)(Dấu ''='' xảy ra khi và chỉ khi a=b)

Suy ra: \(\frac{a^6+b^6}{ab}\ge a^4+b^4\)

Vậy: .....................

26 tháng 3 2018

mk ko hiểu đoạn dòng 1 với dòng 2 lắm