Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-8x^2-6x=-2\left(4x^2+3x\right)=-2\left(4x^2+2.\frac{3}{4}.2x+\frac{9}{16}-\frac{9}{16}\right)\)
\(=-2\left(2x+\frac{3}{4}\right)^2+\frac{9}{8}\le\frac{9}{8}\)
=> Min A = 9/8
Dấu "=" xảy ra <=> \(2x+\frac{3}{4}=0\)
<=> x = -3/8
Vậy Min A = 9/8 <=> x = -3/8
Trả lời:
\(A=-8x^2-6x=-2\left(4x^2+3x\right)=-2\left(4x^2+2.2x.\frac{3}{4}+\frac{9}{16}-\frac{9}{16}\right)\)
\(=-2\left[\left(2x+\frac{3}{4}\right)^2-\frac{9}{16}\right]=-2\left(2x+\frac{3}{4}\right)^2+\frac{9}{8}\le\frac{9}{8}\forall x\)
Dấu "=" xảy ra khi \(2x+\frac{3}{4}=0\Leftrightarrow x=-\frac{3}{8}\)
Vậy GTLN của A = 9/8 khi x = - 3/8
b, \(B=5x-4x^2=-\left(4x^2-5x\right)=-\left(4x^2-2.2x.\frac{5}{4}+\frac{25}{16}-\frac{25}{16}\right)\)
\(=-\left[\left(2x-\frac{5}{4}\right)^2-\frac{25}{16}\right]=-\left(2x-\frac{5}{4}\right)^2+\frac{25}{16}\le\frac{25}{16}\forall x\)
Dấu "=" xảy ra khi \(2x-\frac{5}{4}=0\Leftrightarrow x=\frac{5}{8}\)
Vậy GTLN của B = 25/16 khi x = 5/8
Cho tam giác abc có góc a = 90, cạnh ac= 15,bc=25(cm) . Kẻ đường cao ah(h thuộc bc)Vẽ thêm đường phân giác ci ( i thuộc ab) . gọi O là giao điểm của ah và ci.CM:HC.AI=AC.HO
Biến đổi
HC.AI=AC.HO
<=> HC/HO=AC/AI
xét 2 tam giac HCO va tam giac ACI
mình chỉ nói ý thôi nhé
+) goc AHB = goc CAB cung = 90 do)
b la goc chung
+) tính AB dung py-ta-go
tính AH bang cach thay so vào các tỉ số dong dang của 2 tam giac tren
tính BH tương tự như tính AH
+) biến đổi
HC.AI=AC.HO
<=> HC/HO=AC/AI
xét 2 tam giac HCO va tam giac ACI
Ta có x + y = 9
=> (x + y)2 = 81
<=> x2 + 2xy + y2 = 81
<=> x2 - 2xy + y2 + 4xy = 81
<=> (x - y)2 +4.14 = 81
<=> (x - y)2 = 25
<=> \(\orbr{\begin{cases}x-y=5\\x-y=-5\end{cases}}\)
Khi x - y = 5 và x + y = 9
=> x = 7 ; y = 2
Khi x - y = -5 ; x + y = 9
<=> x = 2 ; y = 7
Khi đó x4 + y4 = 24 + 74 = 2417
x5 + y5 = 75 + 25 = 16839
a) \(8x^3-y^3-6xy\left(2x-y\right)=\left(2x-y\right)\left(4x^2+2xy+y^2\right)-6xy\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2+2xy+y^2-6xy\right)=\left(2x-y\right)\left(4x^2-4xy+y^2\right)\)
\(=\left(2x-y\right)\left(2x-y\right)^2=\left(2x-y\right)^3\)
b) \(\left(3x+2\right)^2-2\left(x-1\right)\left(3x+2\right)+\left(x-1\right)^2\)
\(=\left[\left(3x+2\right)-\left(x-1\right)\right]^2=\left(3x+2-x+1\right)^2=\left(2x+3\right)^2\)
a) 8x3 - y3 - 6xy(2x - y)
= (2x)3 - y3 - 3.2x.y.(2x - y)
= (2x - y)3
b) (3x + 2)2 - 2(x - 1)(3x + 2) + (x - 1)2
= (3x + 2 - x + 1)2
= (2x + 3)2
1.
a. x3 - 4x2 - xy2 + 4x
= x ( x2 - 4x + 4 - y2 )
= x [ ( x - 2 )2 - y2 ]
= x ( x - y - 2 ) ( x + y - 2 )
b. x2 - x - 2 = x2 + x - 2x - 2 = x ( x + 1 ) - 2 ( x + 1 ) = ( x - 2 ) ( x + 1 )
c. x4 + 4
= ( x4 + 2x3 + 2x2 ) - ( 2x3 + 4x2 + 4x ) + ( 2x2 + 4x + 4 )
= x2 ( x2 + 2x + 2 ) - 2x ( x2 + 2x + 2 ) + 2 ( x2 + 2x + 2 )
= ( x2 + 2x + 2 ) ( x2 - 2x + 2 )
a) \(\left(2x-3\right)^2=16\)
=> \(2x-3=4\)
=> \(2x=4+3=7\)
=> \(x=\frac{7}{2}=3,5\)
b) \(\left(3x-2\right)^5=-243\)
=> \(3x-2=-3\)
=> \(3x=-3+2=-1\)
=> \(x=-\frac{1}{3}\)
a) (2x-3)^2=16
có 2 trường hợp:
_ 2x-3=-4 suy ra x=1/2
_ 2x-3=4 suy ra x=7/2
vậy x=1/2 hoặc x=7/2
b) tương tự câu a) nhưng chỉ có một trường hợp là 3x-2=-3 thôi. coi chừng bị lừa
Ta có A=243+(-57)-243+(-143)
=243(-57-143)
=243.(-200)
=-48600
B=124.(-38)+38.576
=(-124).38+38.576
=38(576-124)=38.452
=17176