Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2+22+....+260
A = (2 +22+23)+...+(258+259+260)
A = 2. (1+2+4) + ...+258 (1+2+4)
A = 2.7 +...+258.7
=> A chia hết cho 7
A = 2 + 22 + ... + 260
2A = 22 + 23 + ... + 261
2A - A = (22 + 23 + ... + 261) - (2 + 22 + ... + 260)
A = 261 - 2
Ta có: 23 đồng dư với 1 (mod 7)
=> 260 đồng dư với 1 (mod 7)
=> 260 - 1 chia hết cho 7
=> 2.(260 - 1) chia hết cho 7
=> 261 - 2 chia hết cho 7
=> A chia hết cho 7 (đpcm)
Chú ý: kí hiệu đồng dư mk ko bik ở đâu nên ghi = chữ, bn tự thay đổi nha
S = ( 21 + 22 ) + ( 23 + 24 ) + ..... + ( 259 + 260 )
S = 2 x ( 1 + 2 ) + 23 x ( 1 + 2 ) + .......... + 259 x ( 1 + 2 )
S = 2 x 3 + 23 x 3 + ..... + 259 x 3
S = ( 2 + 23 + ........ + 259 ) x 3
mà 3 \(⋮\)3 => S \(⋮\) 3
Ta có :
S= 2^1+2^2+2^3+...+2^60
S= (2^1+2^2)+(2^3+2^4)+...+(2^59+2^60)
s=2(1+2)+2^3(1+2)+...+2^59(1+1)
S= 3(2+2^3+...+2^59)
=> đpcm
2 + 21 + 22 + 23 + ... + 211
= 20 + 21 + 22 + 23 + ... + 211
= 20 . ( 1 + 2 + 4 + 8 + 16 + 32 ) + 26 . ( 1 + 2 + 4 + 8 + 16 + 32 )
= 20 . 63 + 26 . 63
= ( 20 + 26 ) . 63
Do 63 : 9 nên ( 20 + 26 ) . 63 chia hết cho 9 hay 2 + 21 + 22 + 23 + .. + 211 chia hết cho 9
Vậy 2 + 21 + 22 + 23 + ... + 211 chia hết cho 9
2+22+23+....+28+29
=(2+22+23)+....+(27+28+29)
=(2+22+23)+....+26.(2+22+23)
=14+...+26+14
=14.(1+.....+26) \(⋮\)14
Vậy 2+22+23+...+28+29 \(⋮\)14
Chúc bn học tốt
Ta có: 52003 + 52002 + 52001
= 52001.(52 + 5 + 1)
= 52001 . 31 chia hết cho 31
a) Ta có : A=2+22+23+...+210
=(2+22)+(23+24)+...+(29+210)
=2(1+2)+23(1+2)+...+29(1+2)
=2.3+23.3+...+29.3
Vì 3\(⋮\)3 nên 2.3+23.3+...+29.3\(⋮\)3
hay A\(⋮\)3
Vậy A\(⋮\)3.
A = 1 + 2 + 22 + 23 + ...+ 26 + 27
= ( 1 + 2) + ( 22 +23 ) +( 24 + 25 ) + ( 26 + 27) '' có tất cả 8 số chia thành 4 cặp nhé ''
=3 + 22. ( 1 + 2) + 24.(1+2) + 26. ( 1 + 2)
= 3 + 22 .3 + 24.3+ 26 .3
= 3. ( 1 +22 + 24 + 26 ) chia hết cho 3.
Vì a có 60 lũy thừa ( mà 60 chia hết cho 3 ) nên ta có thể chia A thành các nhóm gồm mỗi nhóm 3 lũy thừa như sau :
A = \(2+2^2+2^3+...+2^{59}+2^{60}\)
A = \(\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
A = \(2.\left(1+2+2^2\right)+...+2^{58}.\left(1+2+2^2\right)\)
A = \(2.7+...+2^{58}.7\)
A = \(7.\left(2+...+2^{58}\right)\)
Vậy A \(⋮\)7
Ủng hộ mik nhá ^_^"
A=2+22+23+..+259+260
A=2+22+23+...+2*257*22*257+23*257
A=(2+22+23)+..+(2*22*23)*(257+257+257)
A=14+....+14*(257+257+257)
Vì 14 chia hết cho 7
=> 14+...+14*(257+257+257)
do đó : A chia hết cho 7