K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2016

Đặt : \(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k\)

\(\Rightarrow\frac{a}{2014}=k\Rightarrow a=2014k\)

\(\Rightarrow\frac{b}{2015}=k\Rightarrow b=2015k\)

\(\Rightarrow\frac{c}{2016}=k\Rightarrow c=2016k\)

Ta có : \(4\left(a-b\right)\left(b-c\right)=4\left(2014k-2015k\right)\left(2015k-2016k\right)\)

\(=4k\left(2014-2015\right).k\left(2015-2016\right)=4k.\left(-1\right).k.\left(-1\right)=4.k^2\)( 1 )

\(\Rightarrow\left(c-a\right)^2=\left(2016k-2014k\right)\left(2016k-2014k\right)=\left[\left(2016k-2014k\right)^2\right]=\left[k\left(2016-2014\right)\right]=\left(k^2\right)^2=k^{2.4}\)( 2 )

Từ \(\left(1\right)\left(2\right)\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)

AH
Akai Haruma
Giáo viên
21 tháng 8 2024

Lời giải:

Đặt $\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k$

$\Rightarrow a=2014k; b=2015k; c=2016k$

$\Rightarrow 4(a-b)(b-c)=4(2014k-2015k)(2015k-2016k)$

$=4(-k)(-k)=4k^2(1)$

Và:

$(c-a)^2=(2016k-2014k)^2=(2k)^2=4k^2(2)$

Từ $(1); (2)\Rightarrow 4(a-b)(b-c)=(c-a)^2$ (đpcm)

31 tháng 1 2016

\(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=\frac{a-b}{2014-2015}=\frac{b-c}{2015-2016}=\frac{c-a}{2016-2014}\)

=\(\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)=>\(\frac{\left(a-b\right)\left(b-c\right)}{\left(-1\right)\left(-1\right)}=\frac{\left(c-a\right)^2}{2^2}=\frac{\left(a-b\right)\left(b-c\right)}{1}=\frac{\left(c-a\right)^2}{4}\Leftrightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)

11 tháng 12 2015

a2014+b2014 =a2015+b2015=a2016 +b2016   khi va chi khi a va b = 1 

28 tháng 6 2017

Đặt a/2014 = b/2015 = c/2016 = k => a = 2014k; b = 2015k; c= 2016k

Ta có : 4(a-b)(b-c)=4(2014k-2015k)(2015k-2016k)

        =4(-1k)(-1k)=4k^2 (1) (c-a)^2

        =(2016-2014)^2=(2k)^2=4k^2 (2)

Từ (1) và (2) => ............

9 tháng 11 2017

1; 2 ;3

29 tháng 10 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}=\dfrac{a-b}{2015-2016}=\dfrac{b-c}{2016-2017}=\dfrac{c-a}{2015-2017}\\ \Rightarrow\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{-2}\\\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{-2}=k\\ \Rightarrow a-b=-k;b-c=-k ;c-a=-2k\\ 4\left(a-b\right)\left(b-c\right)=4\left(-k\right)\left(-k\right)=4k^2\\ \left(c-a\right)^2=\left(-2k\right)^2=4k^2\\ \Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\left(ĐPCM\right)\)

29 tháng 10 2017

dài qá =.=

6 tháng 1 2017

đặt \(\frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}=k\)

=> a = 2015k

b = 2016k

c = 2017k

ta có:

4(a-b)(b-c) = 4(2015k-2016k)(2016k-2017k) = 4(-k)(-k) = 4k2 (1)

(c-a)2 = (2017k - 2015k)2 = (2k)2 = 4k2 (2)

từ 1 và 2 => 4(a-b)(b-c) = (c-a)2 (đpcm)

6 tháng 1 2017

Áp dụng t/c của dãy tỉ số = nhau ta có:

\(\frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}\)\(=\frac{a-b}{2015-2016}=\)\(\frac{b-c}{2016-2017}=\frac{c-a}{2017-2015}\)

\(\Rightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)

\(\Rightarrow\frac{\left(a-b\right)\left(b-c\right)}{1}=\)\(\left(\frac{c-a}{2}\right)^2=\)\(\frac{\left(c-a\right)^2}{4}\)

=> 4(a - b)(b - c) = (c - a)2

3 tháng 11 2017

Đặt:

\(\dfrac{a}{2014}=\dfrac{b}{2015}=\dfrac{c}{2016}=t\Leftrightarrow\left\{{}\begin{matrix}a=2014t\\b=2015t\\c=2016t\end{matrix}\right.\)

\(4\left(a-b\right)\left(b-c\right)=4\left(2014t-2015t\right)\left(2015t-2016t\right)=4\left(-k\right)\left(-k\right)=4k^2\)

\(\left(c-a\right)^2=\left(2k\right)^2=4k^2\)

Ta có đpcm