K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2015

A= (2+2^2)+(2^3+2^4)+...+(2^59+2^60)

  = 6 + 2^2.(2+2^20) +...+2^58.(2+2^2)

  = 6+2^2.6+...+2^58.6

  = 6.(1+2^2+...+2^58)

  = 2.3.(1+2^2+...+2^58) chia hết 3

Còn chia hết cho 7 thì bạn ghép 3 số hạng lại

Còn chia hết cho 5 thì bạn ghép 4 số hạng lại

6 tháng 8 2015

nguyễn trung hiếu toàn là chỉ bik làm như thế

25 tháng 7 2018

\(1;a,942^{60}-351^{37}\)

\(=\left(942^4\right)^{15}-\left(....1\right)\)

\(=\left(....6\right)^{15}-\left(...1\right)\)

\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)

\(b,99^5-98^4+97^3-96^2\)

\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)

\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)

\(2;5n-n=4n⋮4\)

25 tháng 7 2018

chả hiểu j

1 tháng 12 2016

1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)

\(3^{40}=\left(3^2\right)^{20}=9^{20}\)

\(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)

2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)

Ta có:\(n+3⋮d,2n+5⋮d\)

\(\Rightarrow2n+6⋮d,2n+5⋮d\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)

1 tháng 12 2016

3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)

\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)

\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)

\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)

\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)

6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)

\(2A=2^2+2^3+2^4+...+2^{101}\)

\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)

\(A=2^{101}-2\)

\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)

16 tháng 5 2016

a)abc chia hết 27

=>abc chia hết 3 và 9

mà abc chia hết 9 thì 100% chia hết 3

mà abc chia hết 9=>(a+b+c) chia hết 9

=>(b+c+a=a+b+c) chia hết 9 => bca chia hết 3

=>bca chia hết 27

16 tháng 5 2016

a ) vì abc chia hết cho 27 

=> bca chia hết cho 27 ( hiển nhiên đúng )

2 tháng 5 2017

 c/m: 10^n + 18n - 1 chia hết cho 27
10^n + 18n - 1= (10^n - 1) + 18n
10^n -1: vs n=2 10^2-1=99 (2 chữ số 9)
vs n=3 10^3-1=999 (3 chữ số 9)
10^n -1=99...9(n chữ số 9)
10^n -1 - 18n=99...9 + 18n
=9(11...1 + 2n) (11....1 có n chữ số 1)
=[9x3(11...1 + 2n)]/3 (Nhân 3 rồi chia cho 3)
=27[(11...1 + 2n)]/3]
Vậy ta cần chứng minh 11...1 + 2n chia hết cho 3 thì biểu thức trên sẽ chia hết cho 27
dấu hiệu của 1 số chia hết cho 3 là tổng các số trong số đó sẽ chia hết cho 3
Xét số 11...1=1+1+...+1 (n chữ số 1)
vs n=2 =>1+1=2=n
n=3 =>1+1+1=3=n
vậy tổng các chữ số của 11...1=1+1+...+1=n (n chữ số 1)
=>11...1+2n có tổng các chữ số =n+2n=3n hiển nhiên chia hết cho 3 (đpcm)

2 tháng 5 2017

S=(5+52+53+54)+(55+56+57+58)+...........+(52009+52010+52011+52012)

  =780+54(5+52+53+54)+...........+52008(5+52+53+54)

  =65*12 + 54*65*12 + .......... + 52008*65*12

  =65*12(1+54+...+52008) chia hết cho 65

=> S chia hết cho 65

11 tháng 8 2023

a) \(A=3+3^2+..+3^{60}\)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)

\(A=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{59}\cdot\left(1+3\right)\)

\(A=4\cdot\left(3+3^3+...+3^{59}\right)\)

Vậy A chia hết cho 4

b) \(A=3+3^2+3^3+...+3^{60}\)

\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)

\(A=3\cdot\left(1+3+3^2\right)+...+3^{58}\cdot\left(1+3+3^2\right)\)

\(A=13\cdot\left(3+..+3^{58}\right)\)

Vậy A chia hết cho 13

2 tháng 9 2017

a)Vì 105 chia hết cho 5 và 5 chia hết cho 5 nên 105 + 5 chia hết cho 5. 

Ta có: 5 chia 3 dư 2, 105 chia 3 dư 1 ( vì có tổng các chữ số là 1 ) nên 105 +  5 chia hết cho 3.

b) Vì 1050 chia hết cho 2 và 44 chia hết cho 2 nên 1050 + 44 chia hết cho 2.

Vì 44 chia 9 dư 8 và 1050 chia 9 dư 1 ( vì có tổng các chữ số bằng 1 ) nên 1050+44 chia hết cho 9.

c) n x ( n + 1 ) x ( n + 5 ).

Nếu n chia hết cho 3 thì tích trên chia hết cho 3.

Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3 => tích trên chia hết cho 3.

Nếu n chia 3 dư 1 thì n + 5 chia hết cho 3=> tích trên chia hết cho 3.

Vậy ta có n x ( n + 1 ) x ( n + 5 ) luôn chia hết cho 3 với mọi n thuộc N.

2 tháng 9 2017

105+5=100005

số trên có tận cùng là 5 nên chia hết cho 5

có tổng các chữ số là 6 nên chia hết cho 3

còn lại chịu tui học dốt lắm!!!