\(\frac{1}{3}\))(1+\(\frac{1}{8}\))(1+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2019

\(A=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right).....\left(1+\frac{1}{9999}\right)\)

\(=\frac{4}{3}.\frac{9}{8}.....\frac{10000}{9999}\)

\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.....\frac{100.100}{99.101}\)

\(=\frac{2.3.....100}{1.2.....99}.\frac{2.3.....100}{3.4.....101}\)

=\(=100.\frac{2}{101}=\frac{200}{101}\)

11 tháng 7 2019

\(A=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right).....\left(1+\frac{1}{9999}\right)\)

    \(=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}......\frac{10000}{9999}\)

     \(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.....\frac{100.100}{99.101}\)

       \(=\frac{2.3.4....100}{1.2.3....99}.\frac{2.3.4.....100}{3.4.5.....101}\)

         \(=100.\frac{2}{101}\)

          \(=\frac{200}{101}\)

NV
18 tháng 2 2020

Nhanh nhất là sử dụng công thức tổng cấp số nhân với \(u_1=\frac{1}{2}\) và công bội \(q=\frac{1}{2}\) , khỏi cần quy nạp mất thời gian:

\(S_n=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2^n}=u_1.\frac{1-q^n}{1-q}=\frac{1}{2}\left(\frac{1-\frac{1}{2^n}}{1-\frac{1}{2}}\right)=1-\frac{1}{2^n}=\frac{2^n-1}{2^n}\)

AH
Akai Haruma
Giáo viên
21 tháng 1 2020

$n$ tiến đến đâu vậy bạn?

AH
Akai Haruma
Giáo viên
21 tháng 1 2020

Câu 2:

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n(n+1)}=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{(n+1)-n}{n(n+1)}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...\frac{1}{n}-\frac{1}{n+1}\)

\(=1-\frac{1}{n+1}\)

\(\Rightarrow \lim_{n\to \infty}(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n(n+1)})=\lim_{n\to \infty}(1-\frac{1}{n+1})=1-\lim_{n\to \infty}\frac{1}{n+1}=1-0=1\)

28 tháng 7 2019

Áp dụng bất đẳng thức Cô-si liên tục 2 lần ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{2}{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}}\ge\frac{2}{\frac{\left(a+b-c\right)+\left(b+c-a\right)}{2}}=\frac{2}{\frac{2b}{2}}=\frac{2}{b}\)

Chứng minh tương tự ta cũng có :

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{2}{a};\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)

Cộng theo vế của 3 bất đẳng thức trên ta được :

\(2\cdot\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Hay ta có đpcm

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\) hay tam giác ABC đều

NV
24 tháng 9 2020

Hoặc là bạn ghi đề sai hoặc là đáp án sai

Đầu tiên là \(\left(\frac{\pi}{3};-\frac{\pi}{3}\right)\) số dương đứng trước số âm thấy hơi kì

Thứ 2 là bạn chắc kí hiệu khoảng đoạn này chính xác chứ?

NV
26 tháng 9 2020

Từ đường tròn lượng giác ta thấy \(-\frac{\pi}{3}< cosx\le\frac{\pi}{3}\Rightarrow\frac{1}{2}\le y\le1\)

Hay \(y\in\left[\frac{1}{2};1\right]\)

NV
4 tháng 10 2020

1.

\(\Leftrightarrow2sin\frac{x}{2}cos\frac{x}{2}\left(cos^4\frac{x}{2}-sin^4\frac{x}{2}\right)=\frac{\sqrt{3}}{4}\)

\(\Leftrightarrow sinx\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)\left(cos^2\frac{x}{2}+sin^2\frac{x}{2}\right)=\frac{\sqrt{3}}{4}\)

\(\Leftrightarrow sinx.cosx=\frac{\sqrt{3}}{4}\)

\(\Leftrightarrow\frac{1}{2}sin2x=\frac{\sqrt{3}}{4}\)

\(\Leftrightarrow sin2x=\frac{\sqrt{3}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{3}+k2\pi\\2x=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=\frac{\pi}{3}+k\pi\end{matrix}\right.\)

NV
4 tháng 10 2020

3.

ĐKXĐ: ...

\(\frac{1}{cosx}+\frac{1}{2sinx.cosx}=\frac{1}{2sinx.cosx.cos2x}\)

\(\Leftrightarrow2sinx.cos2x+cos2x=1\)

\(\Leftrightarrow2sinx.cos2x+1-2sin^2x=1\)

\(\Leftrightarrow2sinx\left(cos2x-sinx\right)=0\)

\(\Leftrightarrow cos2x-sinx=0\)

\(\Leftrightarrow1-2sin^2x-sinx=0\)

\(\Leftrightarrow2sin^2x+sinx-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\left(l\right)\\sinx=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

NV
18 tháng 9 2020

23.

\(tan^2x\ge0\Rightarrow y\le2\)

\(y_{max}=2\) khi \(tanx=0\)

\(y_{min}\) không tồn tại

24.

\(-1\le cosx\le1\Rightarrow0< 1+cosx\le2\)

\(\Rightarrow y\ge\frac{1}{2}\)

\(y_{min}=\frac{1}{2}\) khi \(cosx=1\)

\(y_{max}\) ko tồn tại

NV
18 tháng 9 2020

19.

\(y=\sqrt{5-\frac{1}{2}\left(2sinxcosx\right)^2}=\sqrt{5-\frac{1}{2}sin^22x}\)

\(0\le sin^22x\le1\Rightarrow\frac{3\sqrt{2}}{2}\le y\le\sqrt{5}\)

\(y_{min}=\frac{3\sqrt{2}}{2}\) khi \(sin^22x=1\)

\(y_{max}=\sqrt{5}\) khi \(sin^22x=0\)

21.

\(y=2sin^2x-\left(1-2sin^2x\right)=4sin^2x-1\)

\(0\le sin^2x\le1\Rightarrow-1\le y\le3\)

\(y_{min}=-1\) khi \(sin^2x=0\)

\(y_{max}=3\) khi \(sin^2x=1\)