K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2020

\(a)\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{132}\)

\(=\frac{22}{132}+\frac{11}{132}+\frac{1}{20}+\frac{1}{132}\)

\(=\frac{33}{132}+\frac{1}{20}+\frac{1}{132}\)

\(=\frac{34}{132}+\frac{1}{20}\)

\(=\frac{17}{66}+\frac{1}{20}\)

\(=\frac{203}{660}\)

15 tháng 6 2020

\(a,\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{132}\) 

\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{132}\)

\(=\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\right)+\frac{1}{132}\)

\(=\left(\frac{1}{2}-\frac{1}{5}\right)+\frac{1}{132}\)

\(=\frac{3}{10}+\frac{1}{132}\)

\(=\frac{198}{660}+\frac{5}{660}\)

\(=\frac{203}{660}\)

22 tháng 7 2015

\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)

\(=\frac{1}{2}\cdot\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}+\frac{2}{13\cdot15}\right)\)

\(=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)

\(=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{1}{2}\cdot\frac{4}{15}=\frac{2}{15}\)

25 tháng 11 2015

1-1/2+1/2-1/3+1/3+1/4-1/4+1/5-1/5+1/6-1/6+1/7-1/7+1/8-1/8+1/9-1/9+1/10-(1-1/3+1/3-3/5+3/5-4/7+5/9-5/9+6/11-6/11-7/13)=1+1/10-1+7/13=83/130

30 tháng 6 2020

\(B=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)

\(=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+\frac{1}{11\cdot13}\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)=\frac{5}{39}\)

29 tháng 3 2017

B = 1/3*5 + 1/5*7 + 1/7*9 + 1/9*11 + 1/11*13

   = 1/2 * ( 2/3*5 + 2/5*7 + 2/7*9 + 2/9*11 + 2/11*13)

   = 1/2 * ( 1/3 - 1/5 + 1/5 -1/7 + ...+ 1/11 - 1/13)

   = 1/2 * ( 1/3 - 1/11)

   = 1/2 * 8/33

   = 4/33

29 tháng 3 2017

\(B=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)

\(B=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)

\(B=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)\)

\(B=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{13}\right)\)

\(B=\frac{1}{2}.\frac{12}{39}\)

\(B=\frac{2}{13}\)

25 tháng 11 2015

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}-\frac{1}{1.3}-\frac{1}{3.5}-\frac{1}{5.7}-...-\frac{1}{11.13}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}-\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\right)\)

\(=1-\frac{1}{10}-\frac{1}{2}.\left(1-\frac{1}{13}\right)=\frac{9}{10}-\frac{6}{13}=\frac{57}{130}\)

25 tháng 11 2015

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{90}-\frac{1}{3}-\frac{1}{15}-.....-\frac{1}{143}\)

\(=\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{90}\right)-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+.....+\frac{1}{143}\right)\)

\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{9.10}\right)-\left(\frac{1}{1.3}+\frac{1}{3.5}+.....+\frac{1}{11.13}\right)\)

\(=\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-.....-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)-\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-.....-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)\(=\left(\frac{1}{1}-\frac{1}{10}\right)-\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{13}\right)=\frac{9}{10}-\frac{6}{13}=\frac{117}{130}-\frac{78}{130}=\frac{39}{130}=\frac{3}{10}\)

6 tháng 3 2017

tk đi rồi mk tk lại......

A=1/3.5+1/5.7+1/7.9+1/9.11+1/11.13

A=1/2 [1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+1/11-1/13]

A=1/2.10/39

A=5/39

ai tk mình

mình tk lại

\(a;\frac{1}{n}-\frac{1}{n-1}=\frac{n-1-n}{n\left(n-1\right)}=-\frac{1}{n\left(n-1\right)}\)

10 tháng 8 2019

a)  \(\frac{1}{n}-\frac{1}{n-1}=\frac{n-1-n}{n\left(n-1\right)}=-\frac{1}{n\left(n-1\right)}\)

b)  \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)(cái này là 1 tính chất nha bn ! tìm hiểu thêm nhé )

c)đặt   C= \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)

        => 2C = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}=\frac{1}{3}-\frac{1}{13}=\frac{10}{39}\)

=>   C=5/39

d) Ý d) lm tương tự ý c nha 

e)  đặt E =\(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\)

   =>   2E=\(1+\frac{1}{2}+...+\frac{1}{2^{99}}\)

lấy 2E-E =\(1+\frac{1}{2}+...+\frac{1}{2^{99}}-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{100}}=1-\frac{1}{2^{100}}\)

=.> E=1 - \(\frac{1}{2^{100}}\) 

10 tháng 4 2018

ta có

\(\frac{1}{15}=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)\)

\(\frac{1}{35}=\frac{1}{2}\left(\frac{1}{5}-\frac{1}{7}\right)\)

\(\frac{1}{63}=\frac{1}{2}\left(\frac{1}{7}-\frac{1}{9}\right)\)

......................................

\(\frac{1}{143}=\frac{1}{2}\left(\frac{1}{11}-\frac{1}{13}\right)\)

Cộng hết lại: \(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)=\frac{1}{2}.\frac{10}{39}=\frac{5}{39}\)

10 tháng 4 2018

 B = \(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)

\(\Rightarrow B=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)

\(\Rightarrow B=\frac{1.2}{3.5.2}+\frac{1.2}{5.7.2}+\frac{1.2}{7.9.2}+\frac{1.2}{9.11.2}+\frac{1.2}{11.13.2}\)

\(\Rightarrow B=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)

\(\Rightarrow B=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)

\(\Rightarrow B=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{13}\right)\)

\(\Rightarrow B=\frac{1}{2}.\frac{10}{39}\)

\(\Rightarrow B=\frac{5}{39}\)

Vậy \(B=\frac{5}{39}\)

22 tháng 3 2019

\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)

\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)

\(A=\frac{1}{2}\left(\frac{2}{3.5}+...+\frac{2}{11.13}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)\)

\(A=\frac{1}{2}\cdot\frac{10}{39}=\frac{5}{39}\)

P/s: Có thể tính sai :<

22 tháng 3 2019

\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)

\(=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+\frac{1}{11\cdot13}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\)

\(=\frac{1}{3}-\frac{1}{13}=\frac{10}{39}\)