K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=1+3+3^2+3^3+...+3^{99}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{100}\)

\(\Rightarrow3A-A=2A=\left(3+3^2+3^3+...+3^{100}\right)-\left(\text{​​}\text{​​}\text{​​}1+3^2+3^3+...+3^{99}\right)\)

\(\Rightarrow2A=3^{100}-1\Rightarrow A=\frac{3^{100}-1}{2}\)

còn 2 bài nữa bạn ơi

17 tháng 6 2018

a, \(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\\ 3B=3+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2003}}+\dfrac{1}{3^{2004}}\\ 3B-B=\left(3+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2003}}+\dfrac{1}{3^{2004}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\right)\\2B=3-\dfrac{1}{3^{2005}}\\ B=\dfrac{3-\dfrac{1}{3^{2005}}}{2}\)

b,

\(A=1+5+5^2+5^3+...+5^{49}+5^{50}\\ 5A=5+5^2+5^3+5^4+...+5^{50}+5^{51}\\ 5A-A=\left(5+5^2+5^3+5^4+...+5^{50}+5^{51}\right)-\left(1+5+5^2+5^3+...+5^{49}+5^{50}\right)\\ 4A=5^{51}-1\\ A=\dfrac{5^{51}-1}{4}\)

c,

\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2-1}\right)......\left(\dfrac{1}{100^2-1}\right)\\ A=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{16}-1\right)......\left(\dfrac{1}{10000}-1\right)\\ A=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\cdot\cdot\cdot\dfrac{9999}{10000}\\ A=\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot\cdot\cdot\cdot\dfrac{99\cdot101}{100\cdot100}\\ A=\dfrac{1\cdot2\cdot3\cdot\cdot\cdot\cdot99}{2\cdot3\cdot4\cdot\cdot\cdot\cdot100}\cdot\dfrac{3\cdot4\cdot5\cdot\cdot\cdot\cdot101}{2\cdot3\cdot4\cdot\cdot\cdot\cdot100}\\ A=\dfrac{1}{100}\cdot\dfrac{101}{2}\\ A=\dfrac{101}{200}\)

17 tháng 6 2018

d,

\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\\ A=\left(2^{100}+2^{98}+...+2^2\right)-\left(2^{99}+2^{97}+...+2^1\right)\)

Đặt \(A=B-C\)

\(\Rightarrow B=\left(2^{100}+2^{98}+...+2^2\right)vàC=\left(2^{99}+2^{97}+...+2^1\right)\)

\(B=2^{100}+2^{98}+...+2^2\\ 4B=2^{102}+2^{100}+...+2^4\\ 4B-B=\left(2^{102}+2^{100}+...+2^4\right)-\left(2^{100}+2^{98}+...+2^2\right)\\ 3B=2^{102}-2^2\\ B=\dfrac{2^{102}-2^2}{3}\left(1\right)\)

\(C=2^{99}+2^{97}+...+2^1\\ 4C=2^{101}+2^{99}+...+2^3\\ 4C-C=\left(2^{101}+2^{99}+...+2^3\right)-\left(2^{99}+2^{97}+...+2\right)\\ 3C=2^{101}-2\\ C=\dfrac{2^{101}-2}{3}\left(2\right)\)

Từ (1) và (2) ta có :

\(A=\dfrac{2^{102}-2^2}{3}-\dfrac{2^{101}-2}{3}\\ A=\dfrac{2^{102}-2^2-2^{101}+2}{3}\\ A=\dfrac{2^{102}-2^{101}+2}{3}\)

23 tháng 2 2020

\(A=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)

\(5.A=5.(1+5+5^2+5^3+...+5^{2008}+5^{2009}) \)

\(5.A=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)

\(5.A-A=4.A=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+5^3+...+5^{2008}+5^{2009})\)

\(4.A=5^{2010}-1\)

\(A=\frac{5^{2010}-1}{4}\)

\(B=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2\)

\(2.B=2.(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2)\)

\(2.B=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3\)

\(2.B+B=3.B=(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3)+(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2)\)

\(3.B=2^{101}+2^2 \)

\(B=\frac{2^{101}+2^{2}}{3}\)

\(C=(1000-1^3).(1000-2^3).(1000-3^3)...(1000-50^3)\)

\(C=(1000-1^3).(1000-2^3).(1000-3^3)...(1000-10^3)...(1000-50^3)\)

\(C=(1000-1^3).(1000-2^3).(1000-3^3)...(1000-1000)...(1000-50^3)\)

\(C=(1000-1^3).(1000-2^3).(1000-3^3)...0...(1000-50^3)\)

\(C=0\)

Tick cho mình nha!!!

Chúc bạn học tốt!

23 tháng 2 2020

Mình làm mất hơn 1 tiếng đó!

6 tháng 9 2016

a, \(A=1+5+5^2+5^3+....+5^{2014}+5^{2015}\Rightarrow5A=5+5^2+5^3+5^4+.....+5^{2015}+5^{2016}\)

\(\Rightarrow5A-A=\left(5+5^2+5^3+....+5^{2015}+5^{2016}\right)-\left(1+5+5^2+.....+5^{2014}+5^{2015}\right)\)

\(\Rightarrow4A=5^{2016}-1\Rightarrow A=\frac{5^{2016}-1}{4}\)

b,\(B=2^{100}-2^{99}+2^{98}-.....-2^3+2^2-2\Rightarrow2B=2^{101}-2^{100}+2^{99}-.....-2^4+2^3-2^2\)

\(\Rightarrow B+2B=\left(2^{101}-2^{100}+2^{99}-.....-2^4+2^3-2^2\right)+\left(2^{100}-2^{99}+2^{98}-.....-2^3+2^2-2\right)\)

\(\Rightarrow3B=2^{101}-2\Rightarrow B=\frac{2^{101}-2}{3}\)

Gọi giá trị trên là : A

\(A=3^{100}-3^{99}+3^{98}+....+3^2-3+1\)

\(\Rightarrow3A=3^{101}-3^{100}+3^{99}-3^{98}+......+3^3-3^2+3\)

\(\Rightarrow3A+A=3^{101}+1\)

\(\Rightarrow4A=3^{101}+1\Rightarrow A=\frac{3^{101}+1}{4}\)

5 tháng 8 2016

33×53+5×32×52-53/ 63+33+ 6×62×32-63=53×(33+32- 1)/63×(33+32-1)=53/63=125/216 

25 tháng 7 2017

kết quả là 3 chấm hỏi chấm

26 tháng 7 2017

C=1+3+32+.............+3100

C=\(\frac{3C-C}{2}\)

3C=3+32+33+.............+399+3100+3101

C=1+3+32+..................+399+3100

3C-C=(3+32+33+.............+399+3100+3101)-(1+3+32+..................+399+3100

Triệt tiêu các số hạng co giá trị tuyệt đối  bằng nhau, ta được:

2C=-1+3100

\(\Rightarrow C=\frac{3^{100}-1}{2}\)

D=\(\frac{2D+D}{3}\)

2D=2101-2100+299-298+..............+23-22

D=2100-299+298-297+............+22-2

2D+D=2101-2100+299-298+..............+23-22+2100-299+298-297+............+22-2

Triệt tiêu các số hạng có giá trị tuyệt đối  bằng nhau, ta được:

3D=2101-2

\(\Rightarrow D=\frac{2^{101}-2}{3}\)

B=\(\frac{3}{1\times4}+\frac{5}{4\times9}+\frac{7}{9\times16}+.........+\frac{19}{81\times100}\)

Quan sát biểu thức, ta có nhận xét:

4-1=3;

9-4=5;

16-9=7;

.......;100-81=19

=> Hiệu hai số ở mẫu bằng giá trị ở tử

\(\Rightarrow B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+.......+\frac{1}{81}-\frac{1}{100}\)

\(\Rightarrow B=1-\frac{1}{100}\)

\(B=\frac{99}{100}< \frac{100}{100}\)

Vậy B<1