K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

\(a,\)Đặt \(A=1+2+2^2+...+2^{99}+2^{100}\)

\(\Rightarrow2A=2+2^2+...+2^{100}+2^{101}\)

\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...2^{100}\right)\)

\(\Rightarrow A=2^{101}-1\)

\(b,\)Đặt \(B=5+5^3+5^5+...+5^{97}+5^{99}\)

\(\Rightarrow5^2B=5^3+5^5+...+5^{99}+5^{101}\)

\(\Rightarrow25B-B=\left(5^3+5^5+...+5^{99}+5^{101}\right)-\left(5+5^3+...+5^{99}\right)\)

\(\Rightarrow24B=5^{101}-5\)

\(\Rightarrow B=\frac{5^{101}-5}{24}\)

7 tháng 12 2017

bn hâm mộ cùng phim với mink a

13 tháng 8 2018

A = 2100 - 299 - 298 - ...-2-1

=> 2A = 2101 - 2100 - 299-...-22 - 2

=> 2A-A = 2101 - 2100 - 2100 + 1

A = 2101 - 2100.(1+1) + 1

A = 2101 - 2100. 2+1

A = 2101- 2101+1

A = 1

b) B = 1 - 5 + 52 - 53+...+598-599

=> 5B = 5 - 52+53-54+...+599-5100

=> 5B+B = -5100+1

6B = -5100+1

\(B=\frac{-5^{100}+1}{6}\)

9 tháng 7 2018

\(A=1+2+2^2+...+2^{100}\)

\(2A=2+2^2+2^3+...+2^{101}\)

\(2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)

\(A=2^{101}-1\)

\(B=5+5^3+...+5^{99}\)
\(25B=5^3+5^5+...+5^{101}\)

\(25B-B=\left(5^3+5^5+...+5^{101}\right)-\left(5+5^3+...+5^{99}\right)\)

\(24B=5^{101}-5\)

\(B=\frac{5^{101}-5}{25}=\frac{5^{100}-1}{5}\)

9 tháng 7 2018

\(A=1+2+2^2+....+2^{100}\)

\(\Leftrightarrow2A=2+2^2+.....+2^{100}+2^{101}\)

\(\Leftrightarrow2A-A=\left(2+2^2+....+2^{101}\right)-\left(1+2+....+2^{100}\right)\)

\(\Leftrightarrow A=2^{101}-1\)

\(B=5+5^3+.....+5^{97}+5^{99}\)

\(\Leftrightarrow5^2B=5^3+5^5+....+5^{99}+5^{101}\)

\(\Leftrightarrow25B-B=\left(5^3+5^5+....+5^{101}\right)-\left(5+5^3+...+5^{97}\right)\)

\(\Leftrightarrow24B=5^{101}-5\)

\(\Leftrightarrow B=\frac{5^{101}-5}{24}\)

10 tháng 11 2018

Đề 1 nhé: Ta có: B= 1 +5 +5^2 +...+5^97 + 5^98 +5^99 (1)

5B = 5 + 5^2 + 5^3 +...+5^98 +5^99 + 5^100 (2)

Trừ vế với vế của (2) cho (1) ta có:

4B = 5^100 - 1

=>B = (5^100 - 1)/4

Tk nha bn!

Đề 2 tương tự thôi.

10 tháng 11 2018

\(B=1+5+5^2+5^3+...+5^{98}+5^{99}\)

\(\Rightarrow5B=5+5^2+5^3+....+5^{98}+5^{99}+5^{100}\)

\(\Rightarrow5B-B=\left(5+5^2+5^3+....+5^{100}\right)-\left(1+5+5^2+...+5^{99}\right)\)

\(\Rightarrow4B=5^{100}-1\)

\(\Rightarrow B=\frac{5^{100}-1}{4}\)

(CÒn lại tương tự: ĐS: \(\frac{5^{99}-1}{4}\) )

28 tháng 2 2017

ta có: 1^2 - 2^2 +3^2 -4^2 +...........+99^2-100^2+101^2 

= (1-2)(1+2) + (3-4)(3+4) + (5-6)(5+6) + ....+ (99-100)(99+100) +101^2 

= -3 - 7 - 11 - ....-199 + 101^2 

= 101^2 - (3 + 7 + 11 + ... + 199) 

[ Ta dễ thấy (3 + 7 + 11 + ... + 199) là một cấp số cộng có d=4 và n=50] 

= 101^2 - [(199 + 3).50]/2 

= 5151

31 tháng 12 2018

ta có: 1^2 - 2^2 +3^2 -4^2 +...........+99^2-100^2+101^2 

= (1-2)(1+2) + (3-4)(3+4) + (5-6)(5+6) + ....+ (99-100)(99+100) +101^2 

= -3 - 7 - 11 - ....-199 + 101^2 

= 101^2 - (3 + 7 + 11 + ... + 199) 

[ Ta dễ thấy (3 + 7 + 11 + ... + 199) là một cấp số cộng có d=4 và n=50] 

= 101^2 - [(199 + 3).50]/2 

= 5151