Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 2 + 22 + ... + 22015
\(\Rightarrow\) 2A = 2 + 22 + 23 + ... + 22016
\(\Rightarrow\) 2A - A = (2 + 22 + 23 + ... + 22016) - (1 + 2 + 22 + ... + 22015)
\(\Rightarrow\) A = 22016 - 1
\(\Rightarrow\) A = 4 . 22014 - 1
Vì 4 . 22014 < 5 . 22014 nên 4 . 22014 - 1 < 5 . 22014. \(\Rightarrow\) A < B
Vậy, A < B
Ta có: S= 1 + 2 + 22 + 23 + ... + 22014 + 22015
2S= 2 + 22 + 23 + 24 + ... + 22015 + 22016
=> 2S - S = 22016 - 1
=> S = 22016 - 1 = 4.22014 - 1 < 5.22014
Vậy S < 5.22014
ngân hoàng trường, làm còn ko biết mình đúng hay sai , đáng thương thật
S = 1 + 2 + 22 + .... + 22015
2S = 2 + 22 +.... + 22015 + 22016
S = ( 2 + 22 + ..... + 22015 + 22016 ) - ( 1 + 2 + 22 + ...... + 22015 )
S = 22016 - 1
S = 22014 . 22 - 1
S = 22014 . 4 - 1
Mà 5.22014 > 22014.4 => 5.22014 > 22014.4 - 1
Vậy 5.22014 > S
a,A=2^0+2^1+2^2+...+2^2014
2A=2^1+2^2+2^3+...+2^2015
2A-A=(2^1+2^2+2^3+...+2^2015)-(2^0+2^1+2^2+...+2^2014)
A=2^2015-2^0=2^2015-1=B
=>A=B
b,A=2014.2016=2014.(2015+1)=2014.2015+2014
B=2015^2=2015.2015=(2014+1).2015=2014.2015+2015
Vì 2014<2015 => A<B.
B=2^2015=2^2014.2=2^2014+2^2014
=2^2014+2^2013.2=2^2014+2^2013+2^2013
=2^2014+2^2013+...+2^3.2=2^2014+2^2013+...+2^3+2^3
=2^2014+2^2013+...+2^3+2^2.2=2^2014+2^2013+...+2^3+2^2+2^2
=2^2014+2^2013+...2^3+2^2+2.2=2^2014+2^2013+...+2^3+2^2+2+2
A=1+2+2^2+2^3+...+2^2013+2^2014
=>B> A
2.A = 2.(1+2+22+...+22014)=2+22+23+...22015
2A-A=A=(2+22+...+22015)-(1+2+22+...+22014)
=A=22015-1va B=22015
=A<B