Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
J=6 + 16 + 30 + 48 +...+ 19600 + 19998
Chia cả 2 vế cho 2 ta được
B/2 = 3 + 8 + 15 + 24 + ......... + 98000+ 9999
B/2= 1x3+2x4+3x5+4x6+…….+98x100+99x101
B/2= 100/6[(100-1)x(2x100+1)] = 328350
-> B =328350x2=656700
K=2 + 5 + 9 + 14 + ....+ 4949 + 5049
Nhân cả 2 vế với 2 ta được
2xD=1x4+ 2x5+ 3x6+ 4x7+……..+98x101+99x102
2xD = 1(2+2)+2(3+2)+3(4+2)+...+99(100+2)
2xD = 1x2+1x2+2x3+2x2+3x4+3x2+...+99x100+99x2
2xD= (1x2+2x3+3x4+...+99x100)+2(1+2+3+...+99)
2xD = 333300 + 9900 = 343200
-> D= 343200 :2 =171600
Bài giải
\(B=1\cdot2^2+2\cdot3^2+3\cdot4^2+...+99\cdot100^2\)
\(B=1\cdot2\cdot\left(3-1\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-1\right)+...+99\cdot100\cdot\left(101-1\right)\)
\(B=1\cdot2\cdot3-1\cdot2+2\cdot3\cdot4-2\cdot3+...+99\cdot100\cdot101-99\cdot100\)
\(B=\left(1\cdot2\cdot3+2\cdot3\cdot4+...+99\cdot100\cdot101\right)-\left(1\cdot2+2\cdot3+...+99\cdot100\right)\)
Đặt \(C=1\cdot2\cdot3+2\cdot3\cdot4+...+99\cdot100\cdot101\)
\(4C=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot\left(5-1\right)+...+99\cdot100\cdot101\cdot\left(102-98\right)\)
\(4C=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4+...+99\cdot100\cdot101\cdot102-98\cdot99\cdot100\cdot101\)
\(4C=99\cdot100\cdot101\cdot102\)
\(4C=101989800\)
\(C=101989800\text{ : }4\)
\(C=25497450\)
A=4+12+24+40+...+19404+19800
1/2A=2+6+12+...+9702+9900
1/2A=1.2+2.3+3.4+...+98.99+99.100
3/2A=1.2,3+2.3.(4-1)+3.4.(5-2)+...+98.99.(100-97)+99.100.(101-98)
3/2A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+98.99.100-97.98.99+99.100.101-98.99.100
3/2A=99.100.101
A=(99.100.101):3/2=666600
B= 1+3+6+10+....+4851+4950
2B = 2+6+12+20+...+9702+9900
2B = 1.2+2.3+3.4+4.5+...+98.99+99.100
Xét A = 1.2+2.3+3.4+4.5+...+98.99+99.100
3A = 1.2.3+2.3(4-1)+3.4(5-2)+....+99.100(101-98)
3A = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+99.100.101-98.99.100
3A = 99.100.101
B = 333300
Thay A vào B ta được:
2B = 333300
B = 166650
MK chỉ làm được đến đây thôi
Tính giá trị của A, biết:
A = 1.3+2.4+3.5+...+99.101
Bài làm :
Thay thừa số 3, 4, 5, 6.....101 bắng (2+1), (3+1), (4+1).....(100 +1)
Ta có
A = 1(2+1)+2(3+1)+3(4+1)+...+99(100+1)
A = 1.2+1+2.3+2+3.4+3+...+99.100+99
A = (1.2+2.3+3.4+...+99.100)+(1+2+3+...+99)
A = 333300 + 4950 = 338250
Dãy đầu áp dụng công thức [*2] , Dãy sau công thức [*1]
Tính: A = 1.4+2.5+3.6+...+99.102 = ?
Bài làm:
Thay thừa số 3, 4, 5, 6.....101 bắng (2+1), (3+1), (4+1).....(100 +1)
Ta có
A = 1(2+1)+2(3+1)+3(4+1)+...+99(100+1)
A = 1.2+1+2.3+2+3.4+3+...+99.100+99
A = (1.2+2.3+3.4+...+99.100)+(1+2+3+...+99)
A = 333300 + 4950 = 338250
Dãy đầu áp dụng công thức [*2] , Dãy sau công thức [*1]
Tính tổng các bình phương của 100 số tự nhiê n đầu tiên
A = 12 +22 +32+...+992 +1002
Bài làm :
thay thừa số 3, 4, 5, 6.....101 bắng (2+1), (3+1), (4+1).....(100 +1)
Ta có
A = 1(2+1)+2(3+1)+3(4+1)+...+99(100+1)
A = 1.2+1+2.3+2+3.4+3+...+99.100+99
A = (1.2+2.3+3.4+...+99.100)+(1+2+3+...+99)
A = 333300 + 4950 = 338250
Dãy đầu áp dụng công thức [*2] , Dãy sau công thức [*1]
a)1.22 + 2.32 + 3.42 + ... + 99.1002
= 1.2(3 - 1) + 2.3(4 - 1) + 3.4(5 - 1) + ... + 99.100(101 - 1)
= 1.2.3 - 1.2 + 2.3.4 - 2.3 + 3.4.5 - 3.4 + ... + 99.100.101 - 99.100
= (1.2.3 + 2.3.4 + 3.4.5 + ... + 99.100.101) - (1.2 + 2.3 + 3.4 + ... + 99.100)
nhiều quá vậy ?
Gọi A là biểu thức ta có:
CÂU1 :A = 1.2+2.3+3.4+......+99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
3A = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
3A = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300