K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2016

đặt A=1/1.2+1/2.3+1/3.4+..........1/49.50

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}<1\)

vậy A<1

1 tháng 5 2016

1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50

1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50

1 - 1/50 < 1

3 tháng 5 2020

\(S_1=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{48\cdot49}+\frac{1}{49\cdot50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{48}-\frac{1}{49}+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

\(S_2=\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{10\cdot13}+....+\frac{1}{94\cdot97}+\frac{1}{97\cdot100}\)

\(3S_2=\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+....+\frac{3}{94\cdot97}+\frac{3}{97\cdot100}\)

\(=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+....+\frac{1}{97}-\frac{1}{100}\)

\(=\frac{1}{4}-\frac{1}{100}=\frac{6}{25}\)

=> \(S_2=\frac{6}{25}:3=\frac{2}{25}\)

25 tháng 2 2016

=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + 49.50.3

=> 3A = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + .... + 49.50.( 51 - 48 )

=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 49.50.51 - 48.49.50

=> 3A = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + ( 48.49.50 - 48.49.50 ) + 49.50.51

=> 3A = 49.50.51

=> A = ( 49.50.51 ) : 3 

=> A = 41650

25 tháng 2 2016

A = 1.2 + 2.3 + 3.4 + ..... + 49.50

3A=1.2.3+2.3.3+3.4.3+...+49.50.3

3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+48.49.(50-47)+49.50.(51-48)

3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+48.49.50-47.48.49+49.50.51-48.49.50

3A=(1.2.3-1.2.3)+(2.3.4-2.3.4)+...(47.48.49-47.48.49)-(48.49.50-48.49.50)+49.50.51

3A=0+0+...+0+0+49.50.51

3A=49.50.51

A=\(\frac{49.50.51}{3}\)

A=41650

Đáp số: A=41650

  1/1.2+1/2.3+1/3.4+.....+1/49.50

=1-1/2+1/2-1/3+1/3-1/4+....+1/49-1/50

=1-1/50

=49/50

5 tháng 2 2019

 \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=\frac{1}{1}-\frac{1}{50}\)

\(A=\frac{49}{50}\)

24 tháng 2 2020

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}+\frac{51-50}{50.51}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\)

\(A=1-\frac{1}{51}\)

\(A=\frac{50}{51}\)

2 tháng 5 2018

Ta có:\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(=\frac{49}{50}\)

Mà \(\frac{49}{50}< 1\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}< 1\)

25 tháng 8 2017

Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 32.33

=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + 32.33.34

=> 3S = 32.33.34

=> S = \(\frac{32.33.34}{3}=11968\)

7 tháng 7 2017

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+..........+\frac{1}{49.50}\)

\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..........+\frac{1}{49}-\frac{1}{50}\)

\(\Leftrightarrow A=1-\frac{1}{50}=\frac{49}{50}\)

cái kia tự tìm