Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{a}{a^2}=\frac{a^2}{a^3}=...=\frac{a^{2020}}{a^{2021}}=\frac{a+a^2+....+a^{2020}}{a^2+a^3+...+a^{2021}}\)
=> \(\frac{a}{a^2}=\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\)
=> \(\left(\frac{a}{a^2}\right)^{2020}=\left(\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\right)^{2020}\)
=> \(\frac{a}{a^2}.\frac{a}{a^2}...\frac{a}{a^2}=\left(\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\right)^{2020}\)(2020 thừa số \(\frac{a}{a^2}\))
=> \(\frac{a}{a^2}.\frac{a^2}{a^3}...\frac{a^{2020}}{a^{2021}}=\left(\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\right)^{2020}\)(Vì \(\frac{a}{a^2}=\frac{a^2}{a^3}=...=\frac{a^{2020}}{a^{2021}}\))
=> \(\frac{a}{a^{2021}}=\left(\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\right)^{2020}\)(đpcm)
a) Ta có:
2A=2.(12+122+123+...+122020+122021)2�=2.12+122+123+...+122 020+122 021
2A=1+12+122+123+...+122019+1220202�=1+12+122+123+...+122 019+122 020
Suy ra: 2A−A=(1+12+122+123+...+122019+122020)2�−�=1+12+122+123+...+122 019+122 020
−(12+122+123+...+122020+122021)−12+122+123+...+122 020+122 021
Do đó A=1−122021<1�=1−122021<1.
Lại có B=13+14+15+1360=20+15+12+1360=6060=1�=13+14+15+1360=20+15+12+1360=6060=1.
Vậy A < B.
a: \(\dfrac{7}{4}+\dfrac{-3}{5}=\dfrac{35-12}{20}=\dfrac{23}{20}\)
d: \(\left(-\dfrac{1}{4}\right)^2\cdot\dfrac{4}{11}+\dfrac{7}{11}\cdot\left(-\dfrac{1}{4}\right)^2=\dfrac{1}{16}\)
\(\dfrac{7}{4}+\dfrac{-3}{5}=\dfrac{35}{20}+\dfrac{-12}{20}=\dfrac{23}{20}\)
Ta có :\(\frac{x+4}{2018}+\frac{x+3}{2019}=\frac{x+2}{2020}+\frac{x+1}{2021}\)
=> \(\left(\frac{x+4}{2018}+1\right)+\left(\frac{x+3}{2019}+1\right)=\left(\frac{x+2}{2020}+1\right)+\left(\frac{x+1}{2021}+1\right)\)
=> \(\frac{x+2022}{2018}+\frac{x+2022}{2019}=\frac{x+2022}{2020}+\frac{x+2022}{2021}\)
=> \(\frac{x+2022}{2018}+\frac{x+2022}{2019}-\frac{x+2022}{2020}-\frac{x+2022}{2021}=0\)
=> \(\left(x+2022\right)\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\right)=0\)
Vì \(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\ne0\)
=> x + 2022 = 0
=> x = -2022
Vậy x = -2022
\(\frac{x+4}{2018}+\frac{x+3}{2019}=\frac{x+2}{2020}+\frac{x+1}{2021}\)
\(\frac{x+4}{2018}+1+\frac{x+3}{2019}+1=\frac{x+2}{2020}+1+\frac{x+1}{2021}+1\)
\(\frac{x+4}{2018}+\frac{2018}{2018}+\frac{x+3}{2019}+\frac{2019}{2019}=\frac{x+2}{2020}+\frac{2020}{2020}+\frac{x+1}{2021}+\frac{2021}{2021}\)
\(\frac{x+2022}{2018}+\frac{x+2022}{2019}=\frac{x+2022}{2020}+\frac{x+2022}{2021}\)
\(\frac{x+2022}{2018}+\frac{x+2022}{2019}-\frac{x+2022}{2020}-\frac{x+2022}{2021}=0\)
\(\left(x+2022\right)\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\right)=0\)
\(x+2022=0\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\ne0\right)\)
\(x=0-2022\)
\(x=-2022\)
S = \(\left(1+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)
= \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\right)-2.\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)
= \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1010}\right)\)
= \(\dfrac{1}{1011}+\dfrac{1}{1012}+...+\dfrac{1}{2021}\)
Lời giải:
$3A=1.2(3-0)+2.3(4-1)+3.4(5-2)+....+2020.2021(2022-2019)$
$=(1.2.3+2.3.4+3.4.5+....+2020.2021.2022)-(0.1.2+1.2.3+2.3.4+....+2019.2020.2021)$
$=2020.2021.2022$
$\Rightarrow A=\frac{2020.2021.2022}{3}$