K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2018

Ta thấy : A > 0

Có : 

2A = 1+1/2+1/2^2+.....+1/2^2016

A = 2A - A = (1+1/2+1/2^2+.....+1/2^2016) - (1/2+1/2^2+.....+1/2^2017) = 1 - 1/2^2017 < 1

=> ĐPCM

Tk mk nha

6 tháng 2 2018

tra loi nhanh gium minh nha

10 tháng 5 2022

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15 tháng 4 2018

\(Ta\)có : 

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{20^2}< \frac{1}{19.20}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{20^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)

\(\Rightarrow A< 1-\frac{1}{20}< 1\left(Đpcm\right)\)

Chúc bạn học tốt !!! 

28 tháng 3 2017

sorry

2 tháng 4 2016

a) Ta có 

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{8.8}\)

Mà \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{8.8}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)

                                                      \(=1-\frac{1}{8}\)

                                                       \(=\frac{7}{8}<1\)

Vì \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{8.8}<\frac{7}{8}<1\)

nên \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}<1\)

1 tháng 6 2017

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2017^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2017^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2017^2}< 1-\frac{1}{2017}=\frac{2016}{2017}>\frac{1}{2}\)

\(\Rightarrow\)ko thể cm

1 tháng 6 2017

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2017^2}\)

Ta có :\(\frac{1}{2^2}=\frac{1}{4}\)

\(\frac{1}{3^2}=\frac{1}{2.3}\)

.........

\(\frac{1}{2017^2}=\frac{1}{2016.2017}\)

\(\Rightarrow A< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)

\(\Rightarrow A< \frac{1}{4}-\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(\Rightarrow A< \frac{1}{4}-\frac{1}{2}-\frac{1}{2017}\)

\(A=\frac{-1}{4}-\frac{1}{2017}=\frac{-2021}{8068}\)

\(\Leftrightarrow A< \frac{1}{2}\) . Vì \(\frac{-2021}{8068}< \frac{1}{2}\)

13 tháng 4 2016

mỗi p/số của A đều bé hơn 1/1.2+1/2.3+1/3.4+......+1/49.50

A<1-1/2+1/2-1/3+1/3-1/4+..........+1/49-1/50(tách ra thành hiệu)

A<1-1/50

mà 1/50>0=>1-1/50<1<2

A<1-1/50<1<2

A<2

chúc học tốt

29 tháng 3 2017

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}+\frac{1}{2017^2}\)

\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2016.2016}+\frac{1}{2017.2017}\)

Ta thấy \(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};\frac{1}{4.4}< \frac{1}{3.4};...;\frac{1}{2016.2016}< \frac{1}{2016.2017};\frac{1}{2017.2017}< \frac{1}{2017.2018}\)

Suy ra \(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}+\frac{1}{2017.2018}\)

Nên \(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-...+\frac{1}{2017}-\frac{1}{2018}\)

Khi đó \(A< 1-\frac{1}{2018}< 1\)nên A < 1

Suy ra A - 1 < 0

Vậy A - 1 < 0