Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right).....\left(1+\frac{1}{99.101}\right)\)
\(=\frac{2.2}{1.3}\frac{3.3}{2.4}.....\frac{100.100}{99.101}\)
\(=\frac{\left(2.3.4.....100\right).\left(2.3.4.....100\right)}{\left(1.2.3.....99\right).\left(3.4.5.....101\right)}\)
\(=\frac{100.2}{101}=\frac{200}{101}\)
\(\frac{\left(x-3\right)\left(x+5\right)}{\left(x-2\right)^2}< 0\)
\(\Rightarrow\frac{\left(x-3\right)\left(x+5\right)}{\left(x-2\right).\left(x-2\right)}< 0\)
=> ( x - 3 ) . ( x - 5 ) và ( x - 2 ) . ( x - 2 ) trái dấu
Mà ( x - 2 )2 = ( x - 2 ) . ( x - 2 ) ≥ 0 ∀ x
\(\Rightarrow\hept{\begin{cases}\left(x−3\right).\left(x+5\right)< 0\\\left(x−2\right).\left(x−2\right)>0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< −5;−5< x< 3\\x>2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< −5\\2< x< 3\end{cases}}\)
4/3 .9/8 .16/15 ......10000/9999
2.2 .3.3.4.4.....100.100 /1.3.2.4.3.5.....99.101
( 2.3.4 ....100 ) .( 2.3.4 ....100) / ( 1.2.3.....99). (3.4.5...101 )
100*2 /101
200/101
chú thích không có trong bài nhé
các dâu hiệu nhận biết
" ..........." là dấu nhân
" / " là dâu của phân số
" * " cũng là dấu nhân nha bạn
A = 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/99.100
A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +.....+ 1/99- 1/100
A= 1 - 1/100
A= 99/100
AXXXXXXXXXXXXXXXXXXXXXXX
ghi xong hết rồi
mạng nó rớt, ấn gửi trả lời mà không biết
tong teo
\(A=\left(1+\frac{1}{2^2-1}\right)\left(1+\frac{1}{3^2-1}\right)\left(1+\frac{1}{4^2-1}\right)\cdot...\cdot\left(1+\frac{1}{100^2-1}\right)\)
\(=\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot...\cdot\frac{99^2}{98\cdot100}\cdot\frac{100^2}{99\cdot101}=\frac{200}{101}\)
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)......\left(1+\frac{1}{99.100}\right)\)
\(=\left(1+\frac{1}{2^2-1}\right)\left(1+\frac{1}{3^2-1}\right)......\left(1+\frac{1}{100^2-1}\right)\)
\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}..............\frac{100^2}{99.100}=\frac{200}{101}\)
T nha
\(A=xemlai\) chưa hưa hiểu Quy luật
\(B=\frac{\left(n.\left(n+2\right)+1\right)}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\)
\(B=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.\frac{5.5}{4.5}...\frac{98.98}{97.99}\frac{99.99}{98.100}\frac{100.100}{99.101}\\\)
\(B=\frac{2.100}{1.101}=\frac{200}{101}\)
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right).....+\left(1+\frac{1}{99.101}\right)\)
\(=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}.....\frac{99.101+1}{99.101}\)
\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{100^2}{99.101}\)
\(=\frac{2.3.4.....100}{1.2.3.....99}.\frac{2.3.4.....100}{3.4.5.....101}\)
\(=100.\frac{2}{101}=\frac{200}{101}\)