Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(\frac{1}{3.5.}\right).....\left(1+\frac{1}{99.101}\right)\)
\(=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}.....\frac{10000}{9999}\)
\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{100^2}{99.101}\)
\(=\frac{2^2.3^2.4^2.5^2.....98^2.99^2.100^2}{1.2.3^2.4^2.5^2......99^2.100.101}\)
\(=\frac{2.100}{1.101}\)
\(=\frac{200}{101}\)
\(C=\left(1+\frac{1}{1.3}\right)\)\(.\left(1+\frac{1}{2.4}\right)\)\(.\left(1+\frac{1}{3.5}\right)\)\(.\left(1+\frac{1}{2014.2016}\right)\)
\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{2015^2}{2014.2016}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{2015.2015}{2014.2016}\)
\(=\frac{\left(2.3.4...2015\right).\left(2.3.4...2015\right)}{\left(1.2.3...2014\right).\left(3.4.5...2016\right)}\)
\(=\frac{2015.2}{2016}\)
\(=...\)(tự tinhs)
=1-1/3-1/2+1/4+1/3-1/5-1/4+1/6+...+1/97-1/99-1/98+1/100
=1-1/2-1/99-1/98=2327/4851
\(A=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{7.9}+\dfrac{1}{8.10}\)
\(A=\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{7.9}\right)+\left(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{8.10}\right)\)
\(2A=\dfrac{1}{2}\left[1-\dfrac{1}{9}+\left(\dfrac{1}{2}-\dfrac{1}{10}\right)\right]\)
\(2A=\dfrac{1}{2}\left(\dfrac{8}{9}+\dfrac{2}{5}\right)\)
\(2A=\dfrac{1}{2}.\dfrac{58}{45}\)
\(2A=\dfrac{29}{45}\)
\(A=\dfrac{29}{45}:2=\dfrac{29}{90}\)
A= 1/1.3+1/2.4+1/3.5+...+1/7.9+1/8.10
A = (1/1.3+1/3.5 + 1/5.7 + 1/7.9) + (1/2.4 + 1/4.6 + 1/6.8 + 1/8.10)
A = 1/2. (2/1.3+2/3.5 + 2/5.7 + 2/7.9) + 1/2. (2/2.4 + 2/4.6 + 2/6.8 + 2/8.10)
A= 1/2.(1-1/9) + 1/2.(1/2-1/10)
A = 1/2.8/9 + 1/2.2/5
A = 4/9 + 1/5
A = 20/45 + 9 /45
A = 29/45