K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2016

x=2016 =>x+1=2017

Thay 2007=x+1 vào A ................................................. tự típ

13 tháng 6 2016

=1 phải ko 

20 tháng 6 2016

Dễ thầy 2017=2016+1=x+1

Thay vào ta có:

\(x^{10}-2017x^9+2017x^8-.....+2017x^2-2017x+2017\)

\(=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-....+\left(x+1\right)x^2-\left(x+1\right)x+2017\)

\(=x^{10}-x^{10}-x^9+x^9+x^8-....+x^3+x^2-x^2-x+2017=-x+2017=-2016+2017=1\)

Vậy..........

thanks bn!!

456545756858768978087

2 tháng 11 2019

2017 = 2016 + 1 = x + 1

suy ra 2017x15 = x16 + x15

2017x14 = x15 + x14

.... 

từ đó ta dễ tính ra A

AH
Akai Haruma
Giáo viên
16 tháng 11 2018

Lời giải:

Ta có: \(x^2+y^2+z^2=xy+yz+xz\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=0\)

\(\Leftrightarrow \frac{(x-y)^2+(y-z)^2+(z-x)^2}{2}=0\)

\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)

\((x-y)^2; (y-z)^2;(z-x)^2\geq 0\), do đó để tổng của chúng bằng $0$ thì:

\((x-y)^2=(y-z)^2=(z-x)^2=0\Rightarrow x=y=z\)

\(\Rightarrow 3x^{2017}=3y^{2017}=3z^{2017}=x^{2017}+y^{2017}+z^{2017}=9\)

\(\Rightarrow x=y=z=\sqrt[2017]{3}\)

\(\Rightarrow \left(\frac{2017x+2018y-4023z}{3}\right)^{2017}=\left(\frac{12x}{3}\right)^{2017}=(4x)^{2017}=3.4^{2017}\)

16 tháng 11 2018

Em cảm ơn cô chúc cô ngày nhà giáo vui vẻ

21 tháng 6 2017

f﴾2016﴿=2016^8 ‐ 2017*2016^7 +2017*2016^6 ‐ 2017*2016^5 +...+2017*2016^2 ‐ 2017*2016+ 2018

=2016^8 ‐﴾ 2016^8 + 2016﴿ + ﴾2016^7+2016﴿ ‐ ﴾2016^6 + 2016﴿+....+2016^3+2016 ‐﴾ 2016^2 + 2016﴿+2018

=2018

21 tháng 6 2017

Cho mình hỏi: x = ? 

18 tháng 4 2017

gọi số dư là R

     thương là g(x)

ta có: 

\(x^{2017}+2017x^2+2017x+1=\left(x-1\right).g\left(x\right)+R\)

vậy tại giá trị x=1 thì 

\(x^{2017}+2017x^2+2017x+1=R\)

hay 

\(1^{2017}+2017.1^2+2017.1+1=R\)

=>R=4036

18 tháng 4 2017

bạn lên google gõ định lý bêdu nha áp dungj định lý này ta có f(x) chia cho x-1 có số dư là f(1)=\(1^{2017}\)+2017.1+2017+1=4036

5 tháng 11 2017

\(a,x^4-4x^3+x^2-4x=0\)

\(\Rightarrow\left(x^4-4x^3\right)+\left(x^2-4x\right)=0\)

\(\Rightarrow x^3\left(x-4\right)+x\left(x-4\right)=0\)

\(\Rightarrow\left(x-4\right)\left(x^2+x\right)=0\)

\(\Rightarrow x\left(x-4\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-1\end{matrix}\right.\)

\(b,x^3-5x^2+4x-20=0\)

\(\Rightarrow\left(x^3-5x^2\right)+\left(4x-20\right)=0\)

\(\Rightarrow x^2\left(x-5\right)+4\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x^2+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-5=0\\x^2+4=0\end{matrix}\right.\)

\(\Rightarrow x=5\)

5 tháng 11 2017

a) \(x^4-4x^3+x^2-4x=0\)

\(\Leftrightarrow\left(x^4-4x^3\right)+\left(x^2-4x\right)=0\)

\(\Leftrightarrow x^3\left(x-4\right)+x\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^3+x\right)=0\)

\(\Leftrightarrow x\left(x-4\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x^2+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x^2=-1\left(loai\right)\end{matrix}\right.\)

Vậy x=0; x=4

b) \(x^3-5x^2+4x-20=0\)

\(\Leftrightarrow\left(x^3-5x^2\right)+\left(4x-20\right)=0\)

\(\Leftrightarrow x^2\left(x-5\right)+4\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x^2+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x^2=-4\left(loai\right)\end{matrix}\right.\)

Vậy x=5