K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2016

de qua

6 tháng 8 2018

x.(2.x-1)+1/3-2/3.x=0

6 tháng 7 2018

\(1.6x\left(x-10\right)-2x+20=0\)

\(6x\left(x-10\right)-2\left(x-10\right)=0\)

\(2\left(x-10\right)\left(3x-1\right)=0\)

⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)

KL....

\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)

\(3\left(x-3\right)\left(x^2-1\right)=0\)

\(x=+-1\) hoặc \(x=3\)

KL....

\(3.x^2-8x+16=2\left(x-4\right)\)

\(\left(x-4\right)^2-2\left(x-4\right)=0\)

\(\left(x-4\right)\left(x-6\right)=0\)

\(x=4\) hoặc \(x=6\)

KL.....

\(4.x^2-16+7x\left(x+4\right)=0\)

\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)

\(x=-4hoacx=\dfrac{1}{2}\)

KL.....

\(5.x^2-13x-14=0\)

\(x^2+x-14x-14=0\)

\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)

\(\text{⇔}x=14hoacx=-1\)

KL......

Còn lại tương tự ( dài quá ~ )

18 tháng 3 2020

rrrrrrrr\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

21 tháng 4 2020

Sorry Ngân Chu, đoạn chia hết cho 120 thì thêm cả chia hết cho 2 nữa, nên nhân vào mới ra 120 nhé!!

21 tháng 4 2020

Bài 1:

a, (n + 3)2 - (n - 1)2

= (n + 3 - n + 1)(n + 3 + n - 1)

= 4(2n - 2)

= 8(n - 1)

Vì 8 \(⋮\) 8 nên 8(n - 1) \(⋮\) 8 với n \(\in\) Z

b, n5 - 5n3 + 4n

= n(n4 - 5n2 + 4)

= n(n4 - n2 - 4n2 + 4)

= n[n2(n2 - 1) - 4(n2 - 1)]

= n(n2 - 1)(n2 - 4)

= n(n - 1)(n + 1)(n - 2)(n + 2)

= (n - 2)(n - 1)n(n + 1)(n + 2)

Vì (n - 2)(n - 1)n(n + 1)(n + 2) là tích của 5 số nguyên liên tiếp nên chia hết cho 3, 5, 8

Mà 3 x 5 x 8 = 120

\(\Rightarrow\) (n - 2)(n - 1)n(n + 1)(n + 2) \(⋮\) 120 hay n5 - 5n3 + 4n \(⋮\) 120 với n \(\in\) Z

Bài 2:

a, 4x(x + 1) = 8(x + 1)

\(\Leftrightarrow\) 4x(x + 1) - 8(x + 1) = 0

\(\Leftrightarrow\) (x + 1)(4x - 8) = 0

\(\Leftrightarrow\) 4(x + 1)(x - 2) = 0

\(\Leftrightarrow\) (x + 1)(x - 2) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

Vậy S = {-1; 2}

b, x2 - 6x + 8 = 0

\(\Leftrightarrow\) x2 - 6x + 9 - 1 = 0

\(\Leftrightarrow\) (x - 3)2 - 1 = 0

\(\Leftrightarrow\) (x - 3 - 1)(x - 3 + 1) = 0

\(\Leftrightarrow\) (x - 4)(x - 2) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

Vậy S = {4; 2}

c, x3 + x2 + x + 1 = 0

\(\Leftrightarrow\) x2(x + 1) + (x + 1) = 0

\(\Leftrightarrow\) (x + 1)(x2 + 1) = 0

Vì x2 + 1 > 0 với mọi x

\(\Rightarrow\) x + 1 = 0

\(\Leftrightarrow\) x = -1

Vậy S = {-1}

d, x3 - 7x - 6 = 0

\(\Leftrightarrow\) x3 - x - 6x - 6 = 0

\(\Leftrightarrow\) (x3 - x) - (6x + 6) = 0

\(\Leftrightarrow\) x(x2 - 1) - 6(x + 1) = 0

\(\Leftrightarrow\) x(x - 1)(x + 1) - 6(x + 1) = 0

\(\Leftrightarrow\) (x + 1)[x(x - 1) - 6] = 0

\(\Leftrightarrow\) (x + 1)(x2 - x - 6) = 0

\(\Leftrightarrow\) (x + 1)(x2 - 3x + 2x - 6) = 0

\(\Leftrightarrow\) (x + 1)[x(x - 3) + 2(x - 3)] = 0

\(\Leftrightarrow\) (x + 1)(x - 3)(x + 2) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\\x=-2\end{matrix}\right.\)

Vậy S = {-1; 3; -2}

Câu e hình như bạn viết nhầm 2 lần số 17x thì phải, mình sửa lại rồi!!

e, 3x3 - 7x2 + 17x - 5 = 0

\(\Leftrightarrow\) 3x3 - x2 - 6x2 + 2x + 15x - 5 = 0

\(\Leftrightarrow\) (3x3 - x2) + (-6x2 + 2x) + (15x - 5) = 0

\(\Leftrightarrow\) x2(3x - 1) - 2x(3x - 1) + 5(3x - 1) = 0

\(\Leftrightarrow\) (3x - 1)(x2 - 2x + 5) = 0

\(\Leftrightarrow\) (3x - 1)(x2 - 2x + \(\frac{1}{4}\) + \(\frac{19}{4}\)) = 0

\(\Leftrightarrow\) (3x - 1)[(x - \(\frac{1}{2}\))2 + \(\frac{19}{4}\)] = 0

Vì (x - \(\frac{1}{2}\))2 + \(\frac{19}{4}\) > 0 với mọi x nên

\(\Rightarrow\) 3x - 1 = 0

\(\Leftrightarrow\) x = \(\frac{1}{3}\)

Vậy S = {\(\frac{1}{3}\)}

Bài 3:

Hình như phần a thì 16(1 - x) mới đúng chứ!!

a, x2(x - 1) + 16(1 - x)

= x2(x - 1) - 16(x - 1)

= (x - 1)(x2 - 16)

= (x - 1)(x - 4)(x + 4)

Câu b, d, g mình chịu, hình như đề sai thì phải, mình ko nghĩ ra được!!

c, x3 - 3x2 - 3x + 1

= (x3 + 1) - (3x2 + 3x)

= (x + 1)(x2 + x + 1) - 3x(x + 1)

= (x + 1)(x2 + x + 1 - 3x)

= (x + 1)(x2 - 2x + 1)

= (x + 1)(x - 1)(x - 1)

e, x4 - 13x2 + 36

= x4 - 4x2 - 9x2 + 36

= x2(x2 - 4) - 9(x2 - 4)

= (x2 - 4)(x2 - 9)

= (x - 2)(x + 2)(x - 3)(x + 3)

f, (x2 + x)2 + 4x2 + 4x - 12

= (x2 + x)2 + 4x2 + 4x + 4 - 16

= (x2 + x)2 + 4(x2 + x) + 4 - 16

= (x2 + x + 2)2 - 16

= (x2 + x + 2 - 4)(x2 + x + 2 + 4)

= (x2 + x - 2)(x2 + x + 6)

13 tháng 2 2020
https://i.imgur.com/oYkvP8J.jpg

a) Ta có: \(x^2-3x+2=0\)

\(\Leftrightarrow x^2-x-2x+2=0\)

\(\Leftrightarrow\left(x^2-x\right)-\left(2x-2\right)=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{1;2\right\}\)

b) Ta có: \(-x^2+5x-6=0\)

\(\Leftrightarrow-\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow-\left(x^2-2x-3x+6\right)=0\)

\(\Leftrightarrow-\left[\left(x^2-2x\right)-\left(3x-6\right)\right]=0\)

\(\Leftrightarrow-\left[x\left(x-2\right)-3\left(x-2\right)\right]=0\)

\(\Leftrightarrow-\left[\left(x-2\right)\left(x-3\right)\right]=0\)

\(\Leftrightarrow-\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy: x∈{2;3}

c) Ta có: \(4x^2-12x+5=0\)

\(\Leftrightarrow4x^2-10x-2x+5=0\)

⇔(4x2-10x)-(2x-5)=0

\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)

d) Ta có: \(2x^2+5x+3=0\)

\(\Leftrightarrow2x^2+2x+3x+3=0\)

\(\Leftrightarrow\left(2x^2+2x\right)+\left(3x+3\right)=0\)

\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{-1;\frac{-3}{2}\right\}\)

e) Ta có: \(x^3+2x^2-x-2=0\)

\(\Leftrightarrow\left(x^3+2x^2\right)-\left(x+2\right)=0\)

\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-1=0\\x+1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\\x=-1\end{matrix}\right.\)

Vậy: \(x\in\left\{-2;1;-1\right\}\)

g) Ta có: \(\left(3x-1\right)^2-5\left(2x+1\right)^2+\left(6x-3\right)\left(2x+1\right)=\left(x-1\right)^2\)

\(\Leftrightarrow9x^2-6x+1-20x^2-20x-5+12x^2-3-x^2+2x-1=0\)

\(\Leftrightarrow-24x-8=0\)

\(\Leftrightarrow-8\left(3x+1\right)=0\)

⇔3x+1=0

\(\Leftrightarrow3x=-1\)

\(\Leftrightarrow x=-\frac{1}{3}\)

Vậy: \(x=-\frac{1}{3}\)

22 tháng 1 2020

h) \(2x^3-7x^2+7x-2=0\)

\(\Leftrightarrow2x^3-4x^2-3x^2+6x+x-2=0\)

\(\Leftrightarrow2x^2\left(x-2\right)-3x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-2x-x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[2x\left(x-1\right)-\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy S = {2; 1; \(\frac{1}{2}\)}

i) \(x^4+2x^3+5x^2+4x-12=0\)

\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)

\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{23}{4}\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\\left(x+\frac{1}{2}\right)^2=\frac{-23}{4}\left(loai\right)\end{matrix}\right.\)

Vậy S = {1;-2}