Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x^2y^2-\frac{4}{3}x^2y+2xy\)
\(=xy\left(2xy-\frac{4}{3}x+2\right)\)
b) 2xy2.(x + 5y) - 4xy(5y + x)
= (5y + x)(2xy2 - 4xy)
= 2xy(5y + x)(y - 2)
c) 25 - 4x2 - y2 + 4xy
= 25 - (4x2 - 4xy + y2)
= 52 - (2x + y)2
= (5 - 2x - y)(5 + 2x + y)
d) x2 + 4x - 2xy - 4y +y2
= (x2 - 2xy + y2) + (4x - 4y)
= (x - y)2 + 4(x - y)
= (x - y)(x - y + 4)
e) 12y3 - 3x2y + 12xy - 12y
= 3y(4y2 - x2 + 4x - 4)
= 3y[4y2 - (x - 2)2]
= 3y(2y - x + 2)(2y + x - 2)
f) 64x4 + y4
= (8x2)2 + 16x2y2 + y4 - 16x2y2
= (8x2 + y2)2 - (4xy)2
= (8x2 + y2 - 4xy)(8x2 + y2 + 4xy)
a) \(2x^2y^2-\frac{4}{3}x^2y+2xy\)
b) \(2xy^2\left(x+5y\right)-4xy\left(5y+x\right)\)
\(=\left(x+5y\right)\left(2xy^2-4xy\right)\)
\(=2\left(x+5y\right)\left(xy^2-2xy\right)\)
c) \(25-4x^2-y^2+4xy\)
\(=25-\left(4x^2+y^2-4xy\right)\)
\(=5^2-\left[\left(2x\right)^2-2.2x.y+y^2\right]\)
\(=5^2-\left(2x-y\right)^2\)
\(=\left(5-2x+y\right)\left(5+2x-y\right)\)
d) \(x^2+4x-2xy-4y+y^2\)
\(=\left(x^2-2xy+y^2\right)+\left(4x-4y\right)\)
\(=\left(x-y\right)^2+4\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y\right)+4\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y+4\right)\)
e) \(12y^3-3x^2y+12xy-12y\)
f) \(64x^4+y^4\)
\(=\left(8x^2\right)^2+16x^2y^2+\left(y^2\right)^2-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)
\(=\left(8x^2+y^2+4xy\right)\left(8x^2+y^2-4xy\right)\)
GIÚP MÌNH VỚI ĐỀ BÀI LÀ RÚT GỌN THÔI NHA THUỘC KIỂU HẰNG ĐẲNG THỨC 6 VÀ 7 GIÚP MÌNH VỚI MÌNH CẦN GẤP TRONG TỐI NAY GIÚP VỚI
a) 10x(x - y)2 - 5(x - y)3 = [10x - 5(x - y)](x - y)2 = (10x - 5x + y)(x - y)2 = (5x + y)(x - y)2
b) -x2 - 10x - 25 = -(x2 + 10x + 52) = -(x + 5)2
c) 64x6y4 - 81x2y2 = (8x3y2)2 - (9xy)2 = (8x3y2 + 9xy)(8x3y2 - 9xy)
d) x6 - y6 = (x3)2 - (y3)2 = (x3 - y3)(x3 + y3) = (x - y)(x2 + xy + y2)(x + y)(x2 - xy + y2)
e)1/8x3 - 3/4x2y + 3/2xy2 - y3 = (1/2x)3 - 3.(1/2x)2y + 3.1/2xy2 - y3 = (1/2x - y)3
f) (3x + 1)2 - (x - 1)2 = (3x + 1 + x - 1)(3x + 1 - x + 1) = 4x(2x + 2) = 8x(x + 1)
a ) có \(x^2+y^2+4x-2xy+4y+2019=\left(x-y\right)^2+4\left(x-y\right)+2019=49+28+2019=2096\)
b) \(x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2=\left(x-y\right)^3-\left(x-y\right)^2=343-49=294\)
c)\(x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)=x^3-y^3+x^2+y^2+xy-3x^2y+3xy^2-3xy=\left(x-y\right)^3+\left(x-y\right)^2=343+49=392\)
\(A=x^2+2xy+y^2-4x-4y+1=\left(x+y\right)^2-4\left(x+y\right)+1=3^2-12+1=-2\)
\(B=x^2-2xy+y^2-5x+5y+6=\left(x-y\right)^2-5\left(x-y\right)+6=7^2-5.7+6=20\)
a)Ta có
A=\(x^2+2xy+y^2-4x-4y+1\)
=>A=\(\left(x+y\right)^2-4\left(x+y\right)+1\)
Mà x+y=3 nên
A=\(3^2-4\cdot3+1\)
A=-2
b)Ta có:
B=\(x^2-2xy+y^2-5x+5y+6\)
B=\(\left(x-y\right)^2-5\left(x-y\right)+6\)
Mà x-y=7 nên
B=\(7^2-5\cdot7+6\)
B=20
Có (a+b+c)2 = 3(ab+bc+ac)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=3ab+3bc+3ac\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac-3ab-3bc-3ac\)\(=0\)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ac\)\(=0\)
\(\Rightarrow a^2+b^2+c^2=ab+bc+ac\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)
\(\Rightarrow a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2\)\(=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
\(\Rightarrow a=b=c\)
a) \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-8x^3+y^3\)
\(=2y^3\)
b) \(\left(x^2-1\right)^2-\left(x^4+x^2+1\right)\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-1-x^4-x^2-1\right)\)
\(=\left(x^2-1\right)\left(-x^4-2\right)\)
\(=-x^6+x^4-2x^2+2\).
a: \(\dfrac{x^2+2xy+y^2}{x+y}=x+y\)
b: \(\dfrac{64x^3+1}{4x+1}=16x^2-4x+1\)