K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

a , \(x^2+2xy+y^2+1=\left(x+y\right)^2+1>0\) , \(\forall x,y\)

b , \(x^2-x+1=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0,\forall x\)

c , \(x-1-x^2=-\left(x^2-x+1\right)\)

\(x^2-x+1>0\) (c.m b)

nên -(\(x^2-x+1\) ) < 0 , \(\forall x\)

1 tháng 10 2017

Câu a :

\(x^2+2xy+y^2+1=\left(x+y\right)^2+1\ge1\) nên bất kì giá trị nào của x thì biểu thức trên luôn lớn hơn 0

Câu b :

\(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

nên bất kì giá trị của x thì biểu thức trên luôn lớn hơn 0

Câu c :

\(x-1-x^2=-\left(x^2-x+1\right)=-\left(x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\right)=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\le-\dfrac{3}{4}\)

nên bất kì giá trị nào của x thì biểu thức luôn nhỏ hơn 0

31 tháng 7 2016

+1 hay -1

31 tháng 7 2016

\(x^2-x-1=x^2-2x\frac{1}{2}+\frac{1}{4}+\left(-1-\frac{1}{4}\right)=\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\)

17 tháng 9 2017

ta có : \(m=x^2-x+1=x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi \(x\)

\(\Rightarrow\) giá trị nhỏ nhất của \(m=x^2-x+1\)\(\dfrac{3}{4}\) khi \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

vậy giá trị nhỏ nhất của \(m=x^2-x+1\)\(\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)

18 tháng 6 2017

\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)

= \(\left[\left(x+y+z\right)-\left(x+y\right)\right]^2\)

= \(z^2\)

18 tháng 6 2017

Ta có:(x + y + z)2 - 2(x + y + z) (x + y) + (x + y)2

=[(x+y+z)-(x+y)]2=z2

13 tháng 3 2017

a)\(\left|2x+3\right|=x+2\)

\(\Leftrightarrow\left(\left|2x+3\right|\right)^2=\left(x+2\right)^2\)

\(\Leftrightarrow4x^2+12x+9=x^2+4x+4\)

\(\Leftrightarrow3x^2+8x+5=0\)

\(\Leftrightarrow3x^2+3x+5x+5=0\)

\(\Leftrightarrow3x\left(x+1\right)+5\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x+5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{5}{3}\end{matrix}\right.\)

b)\(x^2-9x+8=0\)

\(\Leftrightarrow x^2-8x-x+8=0\)

\(\Leftrightarrow x\left(x-8\right)-\left(x-8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-8=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)

c)\(x^2-2\left(x-2\right)=4\)

\(\Leftrightarrow\left(x^2-4\right)-2\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-2\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2-2\right)=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

13 tháng 3 2017

b/ \(x^2-9x+8=0\)

Ta có: a = 1 ; b = -9 ; c = 8

\(\Delta=b^2-4ac=\left(-9\right)^2-4.1.8=49\)

\(\Rightarrow\sqrt{\Delta}=7\)

Pt có 2 nghiệm:

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{9+7}{2.1}=8\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{9-7}{2.1}=1\)

Vậy.......................................

26 tháng 9 2017

a) \(x^3-\dfrac{1}{9}x=0\)

\(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)

\(\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\\x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{3}\end{matrix}\right.\)

b) \(x\left(x-3\right)+x-3=0\)

\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)

c) \(2x-2y-x^2+2xy-y^2=0\) (thêm đề)

\(\Rightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)

\(\Rightarrow\left(x-y\right)\left(2-x+y\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\\2-x+y=0\Rightarrow x-y=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=y\left(1\right)\\\left(1\right)\Rightarrow x-x=2\left(loại\right)\end{matrix}\right.\)

d) \(x^2\left(x-3\right)+27-9x=0\)

\(\Rightarrow x^2\left(x-3\right)+\left(x-3\right).9=0\)

\(\Rightarrow\left(x-3\right)\left(x^2+9\right)=0\)

\(\Rightarrow x-3=0\Rightarrow x=3.\)

4 tháng 10 2017

\(\dfrac{2}{5}\)

Bài 1: 

\(=2\left[\left(x-y\right)^3+3xy\left(x-y\right)\right]-3\left[\left(x-y\right)^2+2xy\right]\)

\(=2\cdot\left[2^3+3\cdot2\cdot xy\right]-3\cdot\left[2^2+2xy\right]\)

\(=2\left(8+6xy\right)-3\left(4+2xy\right)\)

\(=16+12xy-12-6xy=6xy+4\)

Bài 4: 

\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=2^3-3\cdot2\cdot\left(-6\right)=8+36=44\)

22 tháng 9 2017

Sao bạn không tự làm bớt đi , bài dễ mà

30 tháng 7 2017

Bài 1:

a, \(x+1=\left(x+1\right)^2\)

\(\Leftrightarrow\left(x+1\right)^2-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+1-1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Vậy x = 0 hoặc x = -1

b, \(x^3+x=0\)

\(\Leftrightarrow x\left(x^2+1\right)=0\)

Do \(x^2+1>0\)

\(\Rightarrow x=0\)

Vậy x = 0

c, \(x^2-10x=-25\)

\(\Leftrightarrow x^2-10x+25=0\)

\(\Leftrightarrow\left(x-5\right)^2=0\)

\(\Leftrightarrow x=5\)

Vậy x = 5

Bài 2: ấn câu hỏi tương tự ý

bài 1:

a)

\(x+1=\left(x+1\right)^2\\ \Leftrightarrow\left(x+1\right)^2-\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)x=0\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=0\end{matrix}\right.\)

b)\(x^3+x=0\\ \Leftrightarrow x\left(x^2+1\right)=0\\ \Rightarrow x=0\)

c)\(x^2-10x=-25\\ \Leftrightarrow x^2-2.5.x+25=0\\ \Leftrightarrow\left(x-5\right)^2=0\\ \Rightarrow x=5\)

bài 2:

a)

\(x^6-y^6=\left(x^3+y^3\right)\left(x^3-y^3\right)\\ =\left(x+y\right)\left(x^2+y^2+xy\right)\left(x-y\right)\left(x^2+y^2-xy\right)\)

b)

\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x+y\right)-3xzy\\ =\left(x+y+z\right)^3-\left(3xz+3zy\right)\left(x+y+z\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2zy-3xz-3zy-3xy\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-zx-zy\right)\)

9 tháng 8 2017

c) Đặt \(t=x^2+x+1\) thì

\(t\left(t+1\right)-12=t^2+t-12=\left(t-3\right)\left(t+4\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x+5\right)=\left(x+2\right)\left(x-1\right)\left(x^2+x+5\right)\)

d) \(\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt \(t=x^2+7x+11\) thì

\(\left(t-1\right)\left(t+1\right)-24=t^2-1-24=t^2-25\)

\(=\left(t-5\right)\left(t+5\right)\)

\(=\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

Rồi nha bạn ok

9 tháng 8 2017

phân tích đa thức thành nhân tử

a) \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)

\(\Leftrightarrow\left(x^2+x\right)^2-5\left(x^2+x\right)+3\left(x^2+x\right)-15\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-5\right)+3\left(x^2+x-5\right)\)

\(\Leftrightarrow\left(x^2+x+3\right)\left(x^2+x-5\right)\)

b) \(x^2+2xy+y^2-x-y-12=0\)

\(\Leftrightarrow\left(x+y\right)^2-\left(x+y\right)-12=0\)

\(\Leftrightarrow\left(x+y\right)^2-4\left(x+y\right)+3\left(x+y\right)-12=0\)

\(\Leftrightarrow\left(x+y-4\right)\left(x+y+3\right)=0\)