Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d)
$(x^2+x)^2+4x^2+4x-12$
$=(x^2+x)^2+4(x^2+x)-12$
$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$
$=(x^2+x)(x^2+x-2)+6(x^2+x-2)$
$=(x^2+x+6)(x^2+x-2)=(x^2+x+6)(x+2)(x-1)$
e)
$(x^2+2x)^2+9x^2+18x+20$
$=(x^2+2x)^2+9(x^2+2x)+20$
$=(x^2+2x)^2+4(x^2+2x)+5(x^2+2x)+20$
$=(x^2+2x)(x^2+2x+4)+5(x^2+2x+4)$
$=(x^2+2x+4)(x^2+2x+5)$
a)
$(x^2+x)^2+3(x^2+x)+2$
$=(x^2+x)^2+(x^2+x)+2(x^2+x)+2$
$=(x^2+x)(x^2+x+1)+2(x^2+x+1)=(x^2+x+1)(x^2+x+2)$
b)
$(x^2+x)^2-2(x^2+x)-15$
$=(x^2+x)^2+3(x^2+x)-5(x^2+x)-15$
$=(x^2+x)(x^2+x+3)-5(x^2+x+3)$
$=(x^2+x+3)(x^2+x-5)$
c)
$(x^2+x+1)(x^2+x+2)-12=(x^2+x+1)^2+(x^2+x+1)-12$
$=(x^2+x+1)^2-3(x^2+x+1)+4(x^2+x+1)-12$
$=(x^2+x+1)(x^2+x+1-3)+4(x^2+x+1-3)$
$=(x^2+x+1-3)(x^2+x+1+4)=(x^2+x-2)(x^2+x+5)$
$=[x(x-1)+2(x-1)](x^2+x+5)=(x+2)(x-1)(x^2+x+5)$
\(M=4x^2-2\left(a+b+c\right)x-\left(ab+bc+ca\right)\)
Thay x, ta có:
\(M=4.\left(\frac{a+b+c}{2}\right)^2-2\left(a+b+c\right).\frac{a+b+c}{2}-\left(ab+bc+ca\right)\)
\(=\left(a+b+c\right)^2-\left(a+b+c\right)^2-\left(ab+bc+ca\right)\)
\(=-ab-bc-ca\)
2/ Số mũ tùm lum, có lẽ b nên ktra lại đề bài!
4x3 - 13x2 + 9x - 18
= 4x3 - 12x2 - x2 + 3x + 6x - 18
= 4x2(x - 3) - x(x - 3) + 6(x - 3)
= (x - 3)(4x2 - x + 6)
x2 + 5x - 6
= x2 + 2x + 3x - 6
= x(x + 2) - 3(x + 2)
= (x + 2)(x - 3)
x3 + 8x2 + 17x + 10
= x3 + x2 + 7x2 + 7x + 10x + 10
= x2(x + 1) + 7x(x + 1) + 10(x + 1)
= (x + 1)(x2 + 7x + 10)
= (x + 1)(x2 + 5x + 2x + 10)
= (x + 1)[ x(x + 5) + 2(x + 5)]
= (x + 1)(x + 5)(x + 2)
x3 + 3x2 + 6x + 4
= x3 + 3x2 + 3x + 1 + 3x + 3
= (x + 1)3 + 3(x + 1)
= (x + 1)[(x + 1)2 + 3]
= (x + 1)(x2 + 2x + 1 + 3)
= (x + 1)(x2 + 2x + 4)
2x3 - 12x2 + 17x - 2
= 2x3 - 8x2 - 4x2 + x + 16x - 2
= (2x3 - 8x2 + x) - (4x2 - 16x + 2)
= x(2x2 - 8x + 1) - 2(2x2 - 8x + 1)
= (2x2 - 8x + 1)(x - 2)
a: \(\Leftrightarrow10x^2+17x+3-4x+17=0\)
\(\Leftrightarrow10x^2+13x+20=0\)
\(\text{Δ}=13^2-4\cdot10\cdot20=-631< 0\)
Do đó: Phương trình vô nghiệm
b: \(\Leftrightarrow x^2+7x-3=x^2-x-1\)
=>8x=2
hay x=1/4
c: \(\Leftrightarrow2x^2-5x-3=x^2-1+3=x^2+2\)
\(\Leftrightarrow x^2-5x-5=0\)
\(\text{Δ}=\left(-5\right)^2-4\cdot1\cdot\left(-5\right)=25+20=45>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{5-3\sqrt{5}}{2}\\x_2=\dfrac{5+3\sqrt{5}}{2}\end{matrix}\right.\)
Câu c;d giải \(\Delta\)
Các câu còn lại là phương trình trùng phương, mình chỉ làm 1 câu thôi. Các câu sau tương tự
a/ \(x^4-2x^2-8=0\left(1\right)\)
Đặt: \(x^2=t\left(t\ge0\right)\)
\(\left(1\right)\Rightarrow t^2-2t-8=0\)
( a = 1; b = -2; c = -8 )
\(\Delta=b^2-4ac\)
\(=\left(-2\right)^2-4.1.\left(-8\right)\)
\(=36>0\)
\(\sqrt{\Delta}=\sqrt{36}=6\)
Pt có 2 nghiệm phân biệt:
\(t_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2-6}{2.1}=-2\left(l\right)\)
\(t_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2+6}{2.1}=4\left(n\right)\Rightarrow x^2=4\Leftrightarrow x=2hayx=-2\)
Vậy: S = {-2;2}
a) \(\frac{1}{x_1^2}+\frac{1}{x_2^2}=\frac{x_1^2+x_2^2}{x_1^2x_1^2}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}\)
b) \(x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)
Đến đây bn tự xài Viet đc rồi nhé