Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đăt 2004=x-1 ta đc
A(2005)=\(x^{2005}-\left(x-1\right)x^{2004}-\left(x-1\right)x^{2003}.....-\left(x-1\right)x^2-\left(x-1\right)x+14\)
=>A(2005)= \(x^{2005}-x^{2005}+x^{2004}-x^{2004}+x^{2003}-....-x^3+x^2-x^2+x+14\)
=>A(2005)=x+14=2005+14=2019
a) \(xy+x^2y^2+x^3y^3+...+x^{2004}y^{2004}\)
Với x=1; y=-1
=> \(\left(-1\right)+1+\left(-1\right)+1+...+\left(-1\right)+1=\left(1-1\right)+\left(1-1\right)+...+\left(1-1\right)\)
\(=0\)
b) \(6x-12\left(y+2\right)+6y\)
\(=6x-12y+24-6y\)
\(=6\left(y-1\right)-12y+14+6y\)
\(=24-6=18\)
c) bạn bổ sung thêm đề
\(A=x^{2005}-2005x^{2004}-x^{2004}+2005x^{2003}+x^{2003}-2005x^{2002}-.....+x^3-2005x^2-x^2+2005x+x-2005+2004\)\(=\left(x-2005\right)x^{2004}-\left(x-2005\right)x^{2003}+\left(x-2005\right)x^{2002}-....+\left(x-2005\right)x^2-\left(x-2005\right)x+\left(x-2005\right)+2004\)\(=\left(x-2005\right)\left(x^{2004}-x^{2003}+x^{2002}-......+x^2-x+1\right)+2004\)
Với x = 2005 => x - 2005 =0
=> A =2004
Thay x=2005 vào biểu thức, ta được:
20052005-2006*20052004+...+2006*20052-2006*2005-1
=20052005-(2006*20052004-..-2006*20052+2006*2005+1)
Đặt A=(2006*20052004-..-2006*20052+2006*2005+1)
2005A=2006*20052005-..-2006*20053+2006*20052+2005
2005A+2005*2006=2006*20052005-..-2006*20053+2006*20052+2006*2005+1+2004=A+2004
2005A-A=2004-2005*2006
2004A=2004-2005*2006
A=(2004-2005*2006)/2004=1-(2005*2006)/2004
=>20052005-(2006*20052004-..-2006*20052+2006*2005+1)=20052005-1+(2005*2006)/2004
đến đây cậu làm được chưa, quy đồng lên rồi tính, phân phối ra ý
\(!X-1!+!x+4!\ge3\)
!X-2!=!Y-3!=0=> X=2; Y=3
2.
a=(3-3^2005)/4
XEM LAI ĐỀ
1.Số hạng thứ 1 cộng số hạng cuối bao giờ cũng lớn hơn hoặc bằng vế phải
=> phần giữa phải triệt tiêu=0
=> x=2 và y=3
a) (x-5)x+2015 - (x-5)x+2014 =0
(x-5)x+2014(x-5 -1) =0
+ x -5 =0 => x =5
+ x -6 =0 => x =6
Vậy x = 5 hoặc x =6
Thay \(x=2003\) vào A ta có:\(A=2003^{17}-2004.2003^{16}+2004.2003^{15}-2004.2003^{14}+...+2004.\left(2003-1\right)\)
\(=2003^{17}-\left(2003+1\right).2003^{16}+\left(2003+1\right).2003^{15}-\left(2003+1\right).2003^{14}+...+\left(2003+1\right).\left(2003-1\right)\)
\(=2003^{17}-2003^{17}+2003^{16}-2003^{16}+2003^{15}-2003^{15}+2003^{14}-2003^{14}+...+\left(2003+1\right).\left(2003-1\right)\)
\(=2004.2002=4012008\)