K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2016

Theo mình, ở phần a) sẽ phải là một số âm( khá lớn) để khi các số đứng trước 2016 sẽ ra bằng -2016, để khi -2016+2016=0

20 tháng 5 2016

câu 1. tìm x nguyên để \(\frac{-35}{6}\)<x<\(\frac{-18}{5}\)

<=> -4,375<x<-3,6

mà x\(\in\)Z nên x={-4}

20 tháng 5 2016

câu 2. A=\(\frac{2015}{2016}\)+\(\frac{2016}{2017}\)

B=\(\frac{2015+2016}{2016+2017}\)=\(\frac{2015}{2016+2017}\)+\(\frac{2016}{2016+2017}\)

Vì \(\frac{2015}{2016+2017}\)<\(\frac{2015}{2016}\)\(\frac{2016}{2016+2017}\)<\(\frac{2016}{2017}\)

Vậy B<A

7 tháng 8 2018

help me

7 tháng 8 2018

\(a)\) Ta có : 

\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)

\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)

\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)

\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)

Lại có : 

\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)

\(\Rightarrow\)\(x=2019\)

Vậy \(x=2019\)

Chúc bạn học tốt ~ 

12 tháng 5 2018

\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)

\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)

\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{20}{41}\div\frac{1}{2}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{40}{41}\)

\(\Leftrightarrow\frac{1}{x+2}=1-\frac{40}{41}\)

\(\Leftrightarrow\frac{1}{x+2}=\frac{1}{41}\)

\(\Leftrightarrow x+2=41\)

\(\Leftrightarrow x=41-2\)

\(\Leftrightarrow x=39\)

5 tháng 4 2020

???????????????????????????????????????????????????????

7 tháng 5 2019

\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\cdot\cdot\cdot\left(x+2017\right)=2017\)                        \(\left(\text{Có }\left(2017-1\right)\text{ : }1+1+1=2018\right)\)

\(\text{Vì }\text{tích trên là tích của 2018 số hạng mà có kết quả = 2017 là số nguyên}>0\text{ }\Rightarrow\text{ }x>0\left(x\in Z\right)\)

\(\text{Mà }\frac{1}{2016!}< 1\)

\(\text{Và số nguyên bé nhất lớn hơn 0 là 1 }\)

\(\Rightarrow\text{ }x>\frac{1}{2016!}\)

\(\text{Mình nghĩ chắc là sai rồi ! Mình cũng đang bận !}\)

30 tháng 3 2018

Bài 1 : dễ bạn tự làm được :) 

Bài 2 : 

Ta có : 

\(B=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

Vì : 

\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)

\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)

\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)

Nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

\(\Leftrightarrow\)\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)

\(\Leftrightarrow\)\(A>B\)

Vậy \(A>B\)

Chúc bạn học tốt ~ 

30 tháng 3 2018

Ta có :  B = 2016 + 2017 + 2018 2015 + 2016 + 2017 = 2016 + 2017 + 2018 2015 + 2016 + 2017 + 2018 2016 + 2016 + 2017 + 2018 2017 Vì :  2016 2015 > 2016 + 2017 + 2018 2015 2017 2016 > 2016 + 2017 + 2018 2016 2018 2017 > 2016 + 2017 + 2018 2017 Nên  2016 2015 + 2017 2016 + 2018 2017 > 2016 + 2017 + 2018 2015 + 2016 + 2017 + 2018 2016 + 2016 + 2017 + 2018 2017 ⇔ 2016 2015 + 2017 2016 + 2018 2017 > 2016 + 2017 + 2018 2015 + 2016 + 2017 ⇔A > B Vậy A > B Chúc bạn học tốt ~ 

26 tháng 3 2017

Tk mình đi mọi người mình bị âm nè!

Ai tk mình mình tk lại cho

Bài 1 : 

a) 40/49 > 15/21

b) 22/49 > 3/8

c) 25/46 < 12/18

4 tháng 4 2018

\(\frac{x+18}{2018}+\frac{x+17}{2017}+\frac{x+16}{2016}=3\)

\(\Rightarrow\frac{x+18}{2018}-1+\frac{x+17}{2017}-1+\frac{x+16}{2016}-1=3-3\)

\(\Rightarrow\frac{x+18-2018}{2018}+\frac{x+17-2017}{2017}+\frac{x+16-2016}{2016}=0\)

\(\Rightarrow\frac{x-2000}{2018}+\frac{x-2000}{2017}+\frac{x-2000}{2016}=0\)

\(\Rightarrow\left(x-2000\right)\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}\right)=0\)

Vì \(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}\ne0\)

=> x - 2000 = 0

=> x            = 2000

4 tháng 4 2018

Ta có : 

\(\frac{x+18}{2018}+\frac{x+17}{2017}+\frac{x+16}{2016}=3\)

\(\Leftrightarrow\)\(\left(\frac{x+18}{2018}-1\right)+\left(\frac{x+17}{2017}-1\right)+\left(\frac{x+16}{2016}-1\right)=3-3\) ( trừ hai vế cho 3 ) 

\(\Leftrightarrow\)\(\frac{x-2000}{2018}+\frac{x-2000}{2017}+\frac{x-2000}{2016}=0\)

\(\Leftrightarrow\)\(\left(x-2000\right)\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}\right)=0\)

Vì \(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}\ne0\)

Nên \(x-2000=0\)

\(\Rightarrow\)\(x=2000\)

Vậy \(x=2000\)

Chúc bạn học tốt ~ 

24 tháng 6 2020

 P \(=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\) 

P\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{50^2-1}{50^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)

P\(=\frac{\left(1.2.3...49\right).\left(3.4.5...51\right)}{\left(2.3.4...50\right).\left(2.3.4...50\right)}\)

P\(=\frac{1.51}{50.2}=\frac{51}{100}\)

11 tháng 5 2017

Bài 5:Giải:

Ta có: \(\left\{{}\begin{matrix}a+3c=2016\left(1\right)\\a+2b=2017\left(2\right)\end{matrix}\right.\)

Từ \(\left(1\right)\Leftrightarrow a=2016-3c\)

Lấy \(\left(2\right)-\left(1\right)\) ta được:

\(2b-3c=1\Leftrightarrow b=\dfrac{1+3c}{2}\)

Khi đó:

\(P=a+b+c=\left(2016-3c\right)+\dfrac{1+3c}{2}\) \(+\) \(c\)

\(=\left(2016+\dfrac{1}{2}\right)+\dfrac{-6c+3c+2c}{2}\)

\(=2016\dfrac{1}{2}-\dfrac{c}{2}\)\(a,b,c\ge0\) nên:

\(P=2016\dfrac{1}{2}-\dfrac{c}{2}\le2016\dfrac{1}{2}\)

Vậy \(P_{max}=2016\dfrac{1}{2}\Leftrightarrow c=0\)