Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x/2 = y/3 = z/4 va x + y + z =18.
Áp dụng tính chất của dãy tỉ số bằng nhau:
x/2 = y/3 = z/4 = x+y+z/2+3+4 = 18 /9 =2
=> x= 2*2 =4
y= 2* 3=6
z=2*4= 8
Vậy x=4; y=6; z=8.
b) x/5 = y/-6 = z/7 va x + y - z =32.
Áp dụng tính chất của dãy tỉ số bằng nhau:
x/5 = y/-6 =z/7 =x+y-z/ 5+(-6) -7 = 32/-8 =-4
=> x= -4 *5 = -20
y= -4* (-6)= 24
z= -4 * 7 = -28
Vậy x=-20 ; y= 24; x= -28.
c) x/5 = y/3 = z/2 va 2x + 3y + 4z =54.
x/5 = 2x/10
y/3 = 3y/9
z/2 = 4z/8
Áp dụng tính chất của dãy tỉ số bằng nhau:
2x/10 = 3y/9 = 4x/8 = 2x+3y+4z/10+9+8 = 54/27= 2
=> x= 2*5 = 10
y= 2*3 =6
x= 2*2 =4
Vậy x= 10; y=6; z=4
d) x/2 = y/3 = z/6 va 3x - 2y + 2z = 24.
x/2 =3x/6
y/3 = 2y/6
z/6 = 2z/12
Áp dụng tính chất của dãy tỉ số bằng nhau:
3x/6 = 2y/6 = 2z/12 = 3x- 2y +2z/6-6+12 = 24/12 =2
=> x= 2*2 =4
y= 2*3 =6
z= 2* 6 =12
Vậy x=4; y=6; z=12
a, x/3 = y/-4 = z/-5
=> 2x/6 = 3y/-12 = 4z/-20
theo đề bài áp dụng tính chất của dãy tỉ số bằng nhau ta có :
2x/6 = 3y/-12 = 4z/-20 = 2x + 3y - 4z/6 + (-12) - (20) = 70/14 = 5
=> x = 5.3 = 15
y = 5.(-4) = -20
z = 5.(-5) = -25
\(\frac{4}{x}=\frac{7}{y}=\frac{12}{z}=>\frac{8}{2x}=\frac{21}{3y}=\frac{48}{4z}=\frac{8+21+48}{1925}=\frac{77}{1925}=\frac{1}{25}\)
=>4/x=1/25=>x=100
=>7/y=1/25=>y=175
=>12/z=1/25=>z=300
a) \(\frac{x}{3}=\frac{y}{4},\frac{y}{5}=\frac{z}{7}\)
Ta có : \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=2\) ( vì 2x + 3y - z = 186 )
\(\Rightarrow\left\{{}\begin{matrix}2x=30.3=90\\3y=60.3=180\\z=28.3=84\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=45\\y=60\\z=84\end{matrix}\right.\)
Vậy : \(\left(x,y,z\right)=\left(45,60,84\right)\)
b) Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x+y+z=-90\)
Áp dụng dãy tỉ số bằng nhau ta được :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{-90}{10}=-9\)
( do \(x+y+z=-90\) )
\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-9\right)=-18\\y=3.\left(-9\right)=-27\\z=5.\left(-9\right)=-45\end{matrix}\right.\)
Vậy : \(\left(x,y,z\right)=\left(-18,-27,-45\right)\)
a)Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{z}{4}=\frac{x+y-z}{3+7-4}=\frac{12}{6}=6\)
+/ \(\frac{x}{3}=6\) => \(x=18\)
+/ \(\frac{y}{7}=6\) => \(y=42\)
+/ \(\frac{z}{4}=6\) => \(z=24\)
b)Ta có: \(\frac{x}{3}=\frac{y}{7}=\frac{z}{y}\) (=) \(\frac{2x}{6}=\frac{3y}{21}=\frac{z}{y}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x}{6}=\frac{3y}{21}=\frac{z}{y}=\frac{2x+3y}{6+21}=\frac{54}{27}=2\)
+/ \(\frac{x}{3}=2\) => \(x=6\)
+/ \(\frac{y}{7}=2\) => \(y=14\)
+/ \(\frac{z}{y}=2\) => \(z=2y=2.14=28\)
T i c k nha ^^