Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhiều quá, các bn ngại làm, chia nhỏ ra,mk làm cho 2 câu
a) x2 +5x -6 = x2 -x +x + 5x -6
= x2 -x +6x -6
= x( x-1) + 6(x-1) = (x-1)(x+6)
b) 5x2 +5xy -x-y = 5x(x+y) -(x+y)
= (x+y)(5x-1)
c) 7x -6x2 -2 = 6( x+2/3)(x+1/2)
d) x2 +4x +3 = x2 +x +3x +3
= x(x+1) + 3(x+1)
= (x+1)(x+3)
Tìm x:
\(5x\left(x-1\right)=x-1\)
\(5x\left(x-1\right)-\left(x-1\right)=0\)
\(\left(5x-1\right)\left(x-1\right)=0\)
\(\Rightarrow\)\(\left[{}\begin{matrix}5x-1=0\\x-1=0\end{matrix}\right.\)\(\Rightarrow\)\(\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=1\end{matrix}\right.\)
Vậy x=\(\dfrac{1}{5}\)hoặc x=1
\(2\left(x+5\right)-x^2-5x=0\)
\(2\left(x+5\right)-x\left(x+5\right)=0\)
\(\left(2-x\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Vậy...
A)\(x^2+5x-6=x^2-x+6x-6\\ =\left(x-1\right)\left(x+6\right)\)
B)\(5x^2+5xy-x-y=5x\left(x+y\right)-\left(x+y\right)\\ =\left(x+y\right)\left(5x-1\right)\)
C)\(7x-6x^2-2=-6x^2+3x+4x-2\\ =-3x\left(2x-1\right)+2\left(2x-1\right)=\left(2x-1\right)\left(2-3x\right)\)
D)\(x^2+4x+3=x^2+x+3x+3=\left(x+1\right)\left(x+3\right)\)
E)\(2x+3x-5=5x-5=5\left(x-1\right)\)
F)\(16x-5x^3=x\left(16-5x^2\right)\)
a,5x^2 - 10xy + 5y^2 - 20z^2
=5(x^2 -2xy +y^2-4z^2 )
=5[(x-y)^2-(2z)^2 ]
=5 .(x-y-2z)(x-y+2z)
b,.= (5x^2+5xy)-(x+y)
=5x(x+y)-(x+y)
=(x+y)(5x-1)
d,x2 - 4x + 3 = x2 - x - 3x + 3
= x(x - 1) - 3(x - 1) = (x -1)(x - 3)
e,x2 - x - 6 = x2 +2x - 3x - 6
= x(x + 2) - 3(x + 2)
= (x + 2)(x - 3)
f,x2 - x - 6 = x2 +2x - 3x - 6
= x(x + 2) - 3(x + 2)
= (x + 2)(x - 3)
g,2x^2(3x - 5)
= 2x^2 x 3x - 2x^2 x 5
= 6x^3 - 10x^2
\(\text{1) }\)
\(\text{a) }5x^2-10xy+5y^2-20z^2\)
\(=5\left(x^2-2xy+y^2-4z^2\right)\)
\(=5\left[\left(x^2-2xy+y^2\right)-4z^2\right]\)
\(=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=5\left(x-y+2z\right)\left(x-y-2z\right)\)
\(\text{b) }5x^2+5xy-x-y\)
\(=\left(5x^2-x\right)+\left(5xy-y\right)\)
\(=x\left(5x-1\right)+y\left(5x-1\right)\)
\(=\left(5x-1\right)\left(x+y\right)\)
\(\text{c) }2\left(x+4\right)-x^2+16\)
\(=2\left(x+4\right)-\left(x^2-16\right)\)
\(=2\left(x+4\right)-\left(x+4\right)\left(x-4\right)\)
\(=\left(x+4\right)\left(2-x+4\right)\)
\(=\left(x+4\right)\left(6-x\right)\)
\(\text{d) }x^2+4x+3\)
\(=x^2+3x+x+3\)
\(=\left(x^2+3x\right)+\left(x+3\right)\)
\(=x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+3\right)\left(x+1\right)\)
\(\text{e) }x^2+5x-6\)
\(=x^2+6x-x-6\)
\(=\left(x^2+6x\right)-\left(x+6\right)\)
\(=x\left(x+6\right)-\left(x+6\right)\)
\(=\left(x+6\right)\left(x-1\right)\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a)x^2-(a+b)x+ab
= x^2 - ax - bx + ab
= (x^2 - ax) - (bx - ab)
= x(x-a) - b(x-a)
= (x-b)(x-a)
b)7x^3-3xyz-21x^2+9z
=
c)4x+4y-x^2(x+y)
= 4(x + y) - x^2(x+y)
= (4-x^2) (x+y)
= (2-x)(2+x)(x+y)
d) y^2+y-x^2+x
= (y^2 - x^2) + (x+y)
= (y-x)(y+x)+ (x+y)
= (y-x+1) (x+y)
e)4x^2-2x-y^2-y
= [(2x)^2 - y^2] - (2x +y)
= (2x-y)(2x+y) - (2x+y)
= (2x -y -1)(2x+y)
f)9x^2-25y^2-6x+10y
=
a) ( 3.x + 1 ) . ( 7.x + 3 ) = (5.x-7 ) . ( 3.x + 1 )
<=> ( 3.x + 1 ) . ( 7.x + 3 ) - ( 5.x - 7) . ( 3.x + 1 ) = 0
<=> ( 3.x + 1 ) . ( 7.x + 3 - 5.x + 7 ) = 0
<=> ( 3.x + 1 ) . ( 2.x + 10 ) = 0
<=> \(\orbr{\begin{cases}3.x+1=0\\2.x+10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-5\end{cases}}}\)
Vậy x = { \(\frac{-1}{3};-5\)}
b) x2 + 10.x + 25 - 4.x . ( x + 5 ) = 0
<=> ( x + 5 )2 -4.x . (x + 5 ) = 0
<=> ( x+ 5 ) . ( x + 5 - 4.x ) = 0
<=> ( x + 5 ) . ( 5 - 3.x ) = 0
<=> \(\orbr{\begin{cases}x+5=0\\5-3.x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}}\)
Vậy x = \(\left\{\frac{5}{3};-5\right\}\)
c) (4.x - 5 )2 - 2. ( 16.x2 -25 ) = 0
<=> ( 4.x-5)2 -2 .( 4.x-5) .( 4.x + 5 ) = 0
<=> ( 4.x -5 )2 - ( 8.x+ 10 ) . ( 4.x -5 ) = 0
<=> ( 4.x -5 ) . ( 4.x-5 - 8.x - 10 ) = 0
<=> ( 4.x - 5 ) . ( -4.x - 15 ) = 0
<=> \(\orbr{\begin{cases}4.x-5=0\\-4.x-15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=\frac{-15}{4}\end{cases}}}\)
Vậy x = \(\left\{\frac{5}{4};\frac{-15}{4}\right\}\)
d) ( 4.x + 3 )2 = 4. ( x2 - 2.x + 1 )
<=> 16.x2 + 24.x + 9 - 4.x2 + 8.x - 4 = 0
<=> 12.x2 + 32.x + 5 =0
<=> 12. ( x +\(\frac{1}{8}\) ) . ( x + \(\frac{5}{2}\)) = 0
<=> \(\orbr{\begin{cases}x+\frac{1}{6}=0\\x+\frac{5}{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\x=\frac{-5}{2}\end{cases}}}\)
Vậy x = \(\left\{\frac{-1}{6};\frac{-5}{2}\right\}\)
e) x2 -11.x + 28 = 0
<=> x2 -4.x - 7.x + 28 = 0
<=> ( x - 7 ) . ( x - 4 ) = 0
<=> \(\orbr{\begin{cases}x-7=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=4\end{cases}}}\)
Vậy x = { 4 ; 7 }
f ) 3.x.3 - 3.x2 - 6.x = 0
<=> 3.x. ( x2 -x - 2 ) = 0
<=> 3.x. ( x - 2 ) . ( x + 1 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
\([x=0\) \([x=0\)
( Lưu ý :Lưu ý này không cần ghi vào vở : Chị nối 2 ý đó làm 1 nha cj ! )
Vậy x = { 2 ; -1 ; 0 }
\(x^2+5x-6=x^2-x+6x-6=x\left(x-1\right)+6\left(x-1\right)=\left(x+6\right)\left(x-1\right)\)
\(5x^2+5xy-x-y=5x\left(x+y\right)-\left(x+y\right)=\left(5x-1\right)\left(x+y\right)\)
\(7x-6x^2-2=-\left(6x^2-7x+2\right)=-\left[\left(6x^2-3x\right)-\left(4x+2\right)\right]=-\left[3x\left(2x-1\right)-2\left(2x-1\right)\right]=-\left[\left(3x-2\right)\left(2x-1\right)\right]\)
d) \(x^2+4x+3=x^2+x+3x+3=x\left(x+1\right)+3\left(x+1\right)=\left(x+3\right)\left(x+1\right)\)