Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(x^3-3x^2-3x+1=0\)
\(\Leftrightarrow x^3+x^2-4x^2-4x+x+1=0\)
\(\Leftrightarrow x^2\left(x+1\right)-4x\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2-4x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-1\\\left(x-2\right)^2-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\pm\sqrt{3}\end{cases}}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{-1;2+\sqrt{3};2-\sqrt{3}\right\}\)
\(a,=x\left(x^2+9\right)\\ b,=\left(3x+4\right)\left(x^2+9\right)\\ c,=a\left(a+b\right)-M\left(a+b\right)=\left(a-M\right)\left(a+b\right)\\ d,=\left(x+1\right)^2-y^2=\left(x+y+1\right)\left(x-y+1\right)\)
B)(5-3x)^2=25+9x^2-30x
c)(5-x^2)(5+x^2)=25-x^4
d)(5x-1)^3=125x^3-1+15x-75x^2
e)(x^2+3)(x^4+9-3x^2)=x^6+27
f)( x-4y)(x^2+4 xy+16 y^2)= x^3-64 y^3
\(\left(x-3\right)\left(x+3\right)-\left(x-3\right)^2\)
\(=x^2-3^2-x^2+6x-3^2\)
\(=-9-9+6x\)
\(=6x-18\)
1 )
\(\left(x-3\right)\left(x+3\right)-\left(x-3\right)^2\)
\(=x^2-3^2-\left[x^2-3x-3x+9\right]\)
\(=x^2-9-x^2+6x-9\)
\(=6x-18\)
2 )
\(\left(6x+1\right)^2+\left(6x-1\right)^2-2\left(6x+1\right)\left(6x-1\right)\)
\(=\left(6x\right)^2+2.6x.1+1+\left(6x\right)^2-2.6x.1+1-2\left[\left(6x\right)^2-1^2\right]\)
\(=36x^2+12x+1+36x^2-12x+1-2\left(36x^2-1\right)\)
\(=72x^2+1+1-72x^2+2\)
\(=4\)
\(=3x^2\left(x^2-1\right)+\left(x^8-3x^4+3x^2-1\right)-\left(x^8-1\right)\)
\(=3x^4-3x^2+x^8-3x^4+3x^2+1-x^8+1\)
\(=2\)
=2 nha ban
(con cach lam ban nhan dang thuc len rui rut gon lai)
1) \(\left(3x+7\right)^2-\left(2x-3\right)^2=0\)
\(\Leftrightarrow\left(3x+7-2x+3\right)\left(3x+7+2x-3\right)=0\)
\(\Leftrightarrow\left(x+10\right)\left(5x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+10=0\\5x+4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-10\\x=\frac{-4}{5}\end{cases}}\)
Vạy ...
phần 2 tương tự áp dụng \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\((4x-1)^2-(5-3x)^2=0\)
\(\Leftrightarrow(4x-1-5-3x)(4x+1+5-3x)=0\)
\(\Leftrightarrow(x-6)(x+6)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
Vậy : ...
( 3x+2). (3x-2)+(x-3)2-10x
=9x2-4+x2-6x+9-10x
=9x2-4+x2-6x+9
=10x-16x+5
(2x+y)2+ (x-2y)2-5. (x+y).(x-y)
=4x2+4xy+y2+x2-4xy+4y2-5.(x2-y2)
=4x2+4xy+y2+x2-4xy+4y2-5x2+5y2
=10y2
(3x-5)2- x.(3x-5)
=9x2-30x+25-3x2+15
=6x2-30x+40
Sửa đề: (sửa sai thì em làm lại:v) \(A=\left(x^2+3x+1\right)^2+\left(3x-1\right)^2-2\left(x^2+3x+1\right)\left(3x-1\right)\)
Đặt \(x^2+3x+1=a;3x-1=b\) cho nó dễ nhìn!
\(A=a^2+b^2-2ab=\left(a-b\right)^2\)
\(=\left(x^2+3x+1-\left(3x-1\right)\right)^2=\left(x^2+2\right)^2=x^4+4x^2+4\)