K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2020

nhầm xíu '-'

25 tháng 2 2017

Làm câu a và b thoy nhé, câu c tương tự câu a, câu d và e thì dễ rồi.

a) Vì \(\left(3x+1\right)\left(2x-4\right)< 0\)

\(\Rightarrow3x+1>0\)\(2x-4< 0\)

hoặc \(3x+1< 0\)\(2x-4>0\)

+) \(3x+1>0\Rightarrow x>\frac{-1}{3}\left(1\right)\)

\(2x-4< 0\Rightarrow x< 2\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{-1}{3}< x< 2\)

+) \(3x+1< 0\Rightarrow x< \frac{-1}{3}\left(3\right)\)

\(2x-4>0\Rightarrow x>2\left(4\right)\)

Từ (3) và (4) suy ra \(2< x< \frac{-1}{3}\)

\(\Rightarrow\) vô lý.

Vậy \(\frac{-1}{3}< x< 2.\)

b) Do \(\left(-x-5\right)\left(2x+1\right)>0\)

\(\Rightarrow-x-5>0\)\(2x+1>0\)

hoặc \(-x-5< 0\)\(2x+1< 0\)

+) \(-x-5>0\Rightarrow x>-5\left(5\right)\)

\(2x+1>0\Rightarrow x>\frac{-1}{2}\left(6\right)\)

Từ (5) và (6) suy ra \(x>\frac{-1}{2}\)

+) \(-x-5< 0\Rightarrow x< -5\left(7\right)\)

\(2x+1< 0\Rightarrow x< \frac{-1}{2}\) (8)

Từ (7) và (8) suy ra \(x< -5\)

Vậy \(\left[\begin{matrix}x>\frac{-1}{2}\\x< -5\end{matrix}\right.\).

25 tháng 2 2017

d)\(\left|x+3\right|< 5\)

\(\Rightarrow-5< x+3< 5\)

\(\Rightarrow-8< x< 2\)

28 tháng 9 2016

Chắc câu b sai?

 

Bài 2: 

b: =>x-1>-4 và x-1<4

=>-3<x<5

c: =>x-2011>2012 hoặc x-2011<-2012

=>x>4023 hoặc x<-1

d: \(\left(3x-1\right)^{2016}+\left(5y-3\right)^{2018}>=0\forall x,y\)

mà \(\left(3x-1\right)^{2016}+\left(5y-3\right)^{2018}< 0\)

nên \(\left(x,y\right)\in\varnothing\)

27 tháng 9 2024

a; (\(x\) - 2)2.(\(x+1\)).(\(x\) - 4) < 0

    (\(x-2\))2 ≥ 0 ∀\(x\)\(x+1\) = 0 ⇒ \(x=-1\)\(x-4\) = 0 ⇒ \(x=4\)

Lập bảng ta có:

\(x\)        - 1             4
\(x+1\)  -       0       +    |       +
\(x-4\)  -       |         -     0     +
(\(x-2\))2 +       |        +     |      +
(\(x-2\))2.(\(x+1\)).(\(x+4\))   +     0       -      0     +

Theo bảng trên ta có: -1 < \(x\) < 4

Vậy \(-1< x< 4\)

27 tháng 9 2024

b; [\(x^2\).(\(x-3\)):(\(x-9\))] < 0

    \(x-3=0\)⇒ \(x=3\)\(x-9\) = 0 ⇒ \(x=9\)

    Lập bảng ta có:

\(x\)            3                                 9
\(x-3\)     -      0      +                         |     +
\(x-9\)     -     |         -                         0    + 
\(x^2\)   +       |        +                         |     +                              
\(x^2\)(\(x-3\)):(\(x-9\))    +     0         -                      0      +

Theo bảng trên ta có:     3 < \(x\) < 9

Vậy 3 < \(x\) < 9