K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(x\in\varnothing\)

b: \(\Leftrightarrow\left[{}\begin{matrix}4x-1=15\\4x-1=-15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{7}{2}\end{matrix}\right.\)

19 tháng 10 2021

846 : [41 - (7x - 5)] = 47

41 - (7x - 5)=846:47=18

7x - 5=41-18=23

7x=23+5=28

x=28:7=4

19 tháng 10 2021

Thanks bn nhé! 🤗❤️

a: \(\Leftrightarrow x\in\left\{1;2;3;5;6;10;15;30\right\}\)

mà 5<x<29

nên \(x\in\left\{6;10;15\right\}\)

b: \(\Leftrightarrow x\in\left\{...;16;24;32;40;48;56;....\right\}\)

mà 17<x<50

nên \(x\in\left\{24;32;40;48\right\}\)

c: \(\Leftrightarrow x\inƯC\left(12;18\right)\)

\(\Leftrightarrow x\inƯ\left(6\right)\)

hay \(x\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

d: \(x\in BC\left(6;8\right)\)

\(\Leftrightarrow x\in B\left(24\right)\)

mà 30<x<50

nên x=48

15 tháng 11 2015

Giúp mình nha. Thanhks

 

6 tháng 12 2015

a) x thuộc ƯC(54;12) và x lớn nhất

=>x là ƯCLN(54;12)

Ta có:

54=3^3.2

12=2^2.3

 

=>ƯCLN(54;12)=2.3=6

Vậy x=6

b)x thuộc ƯC(48;24) và x lớn nhất

=>x là ƯCLN(48;24)

Ta có:

48 chia hết cho 24 => ƯCLN(48;24)=24

Vậy x=24

c)x thuộc Ư(20) và 0<x<10

Ta có:

Ư(20)={1;2;4;5;10;20}

Mà 0<x<10

=>x thuộc {1;2;4;5}

d)x thuộc Ư(30) và 5<x<hoặc bằng 12

Ta có:

Ư(30)={1;2;3;5;6;10;15;30}

Mà 5<x<hoặc bằng 20

=>x thuộc {6;10;15}

e)x thuộc ƯC(36,24) và x<hoặc bằng 20

Ta có:

36=2^2.3^2

24=2^3.3

=>ƯCLN(36;24)=2^2.3=12

=>ƯC(36;24)={1;2;3;4;6;12)

Mà x <hoặc bằng 20

=>x thuộc {1;2;3;4;6;12}

f)70 chia hết x, 84 chia hết x và x>8

=>x thuộc ƯC(70;84) mà x>8

Ta có:

70=2.5.7

84=2^2.3.7

=>ƯCLN(70;84)=2.7=14

=>ƯC(70;84)={1;2;7;14}

Mà x>8

=>x=14

 

17 tháng 7 2016

91 : x , 26 : x và 10 < x < 30

6 tháng 10 2018

a) x = 21; 42

b) x = { 6; 9; 12; 15; 18; 21; 24; 27 }

c) x = { 60; 90 }

d) x = { 50 }

6 tháng 10 2018

a) x chia hết cho 21; 20<x<63 => x=21 ; 42 

b) x thuộc Ư(30) ; x>3 => x = 1

c) x thuộc B(30) ; 40<x<100=> x = 60 ; 90

d) x thuộc Ư(50) ; x thuộc B(25)=> x = 1 ; 5 ; 25