K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2019

A = x2 + 4xy + 3y3 

A = 52 + 4.5.(-1) + 3.(-1)3

A = 25 + (-20) + (-3)

A = 2

Vậy: x2 + 4xy + 3y3 với x = 5; y = -1 là 2

B = x4 + x3 + 2x2 + x + 1

B = 34 + 33 + 2.(3)2 + 3 + 1

B = 81 + 27 + 18 + 3 + 1

B = 130

Vậy: x4 + x3 + 2x2 + x + 1 với |x| = 3 là 130

17 tháng 9 2019

Bài 1:

a) Ta có: \(2x=5y.\)

=> \(\frac{x}{y}=\frac{5}{2}\)

=> \(\frac{x}{5}=\frac{y}{2}\)\(x.y=90.\)

Đặt \(\frac{x}{5}=\frac{y}{2}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=2k\end{matrix}\right.\)

Có: \(x.y=90\)

=> \(5k.2k=90\)

=> \(10k^2=90\)

=> \(k^2=90:10\)

=> \(k^2=9\)

=> \(k=\pm3.\)

TH1: \(k=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.5=15\\y=3.2=6\end{matrix}\right.\)

TH2: \(k=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x=\left(-3\right).5=-15\\y=\left(-3\right).2=-6\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(15;6\right),\left(-15;-6\right).\)

e) Ta có: \(\frac{x}{y}=\frac{4}{5}.\)

=> \(\frac{x}{4}=\frac{y}{5}\)\(x.y=20.\)

Đặt \(\frac{x}{4}=\frac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=4k\\y=5k\end{matrix}\right.\)

Có: \(x.y=20\)

=> \(4k.5k=20\)

=> \(20k^2=20\)

=> \(k^2=20:20\)

=> \(k^2=1\)

=> \(k=\pm1.\)

TH1: \(k=1\)

\(\Rightarrow\left\{{}\begin{matrix}x=1.4=4\\y=1.5=5\end{matrix}\right.\)

TH2: \(k=-1\)

\(\Rightarrow\left\{{}\begin{matrix}x=\left(-1\right).4=-4\\y=\left(-1\right).5=-5\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(4;5\right),\left(-4;-5\right).\)

Chúc bạn học tốt!

17 tháng 9 2019

sao ngắn vậy bạn

28 tháng 9 2021

=0 bạn nha

29 tháng 3 2020

viết bằng công thức ở chỗ \(\sum\) đi bạn

29 tháng 3 2020

Bạn bảo cái gì cơ

10 tháng 3 2017

Thêm nữa câu a) Tính: M(x) + N(x)+ P(x)

B) Tính M(x) - N (x) - P(x)

ok rồi giúp mình với nha

31 tháng 7 2021

\(1,a^2-2a+1-b^2\)

\(=\left(a^2-2a+1\right)-b^2\)

\(=\left(a-1\right)^2-b^2\)

\(=\left(a-1-b\right)\left(a-1+b\right)\)       Khai triển thành hằng đẳng thức số 3 e  nhé.

\(2,x^2+2xy+y^2-81\)

\(=\left(x^2+2xy+y^2\right)-81\)

\(=\left(x+y\right)^2-9^2\)

\(=\left(x+y-9\right)\left(x+y+9\right)\)Cái này cũng HĐT số 3 nè

\(3,x^2+6y-9-y^2\)

\(=-\left(y^2-6y+9\right)+x^2\)

\(=-\left(y-3\right)^2+x^2\)

\(=x^2-\left(y-3\right)^2\)

\(=\left(x-y-3\right)\left(x-y+3\right)\)

\(5,4x^2+y^2-9-4xy\)

\(=\left(4x^2-4xy+y^2\right)-9\)

\(=\left(2x-y\right)^2-3^2\)

\(=\left(2x-y-3\right)\left(2x-y+3\right)\)

Học tốt

7 tháng 1 2018

a) \(2^3:\left|x-2\right|=2\)

\(\Leftrightarrow8:\left|x-2\right|=2\)

\(\Leftrightarrow\left|x-2\right|=8:2\)

\(\Leftrightarrow\left|x-2\right|=4\)

Xét trường hợp 1: \(x-2=4\)

\(\Rightarrow x=4+2\)

\(\Rightarrow x=6\)

Xét trường hợp 2: \(x-2=-4\)

\(\Rightarrow x=-4+2\)

\(\Rightarrow x=-\left(4-2\right)\)

\(\Rightarrow x=-2\)

Vậy \(x=6\) hoặc \(x=-2\)

b)

7 tháng 1 2018

cảm ơn nha

27 tháng 3 2017

Đặt \(A=xy+x^2y^2+x^3y^3+...+x^{100}y^{100}\)

\(\Rightarrow A=xy+\left(xy\right)^2+\left(xy\right)^3+...+\left(xy\right)^{100}\)

\(\Rightarrow A=\left(-1\right)+1+\left(-1\right)+...+1\) ( 100 số hạng )

\(\Rightarrow A=\left[\left(-1\right)+1\right]+\left[\left(-1\right)+1\right]+...+\left[\left(-1\right)+1\right]\) ( 50 cặp số )

\(\Rightarrow A=0\)

Vậy A = 0