Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi m=2 thì (1) sẽ là x^2+2x+1=0
=>x=-1
b:x1+x2=52
=>2m-2=52
=>2m=54
=>m=27
\(1.B=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10-2\sqrt{5}}}\)
\(B^2=\left(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10-2\sqrt{5}}}\right)^2\)
\(B^2=8+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10-2\sqrt{5}}\right)}\)
\(B^2=8+2\sqrt{5-2\sqrt{5}+1}=8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\text{ |}\sqrt{5}-1\text{ |}=6+2\sqrt{5}=5+2\sqrt{5}+1=\left(\sqrt{5}+1\right)^2\)
\(\text{ |}B\text{ |}=\text{ |}\sqrt{5}+1\text{ |}=\sqrt{5}+1\)
\(2.C=\sqrt{5\sqrt{9}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}=\sqrt{15+5\sqrt{48-10\text{ |}\sqrt{3}+2\text{ |}}}=\sqrt{15+5\sqrt{25+2.5\sqrt{3}+3}}=\sqrt{15+5\text{ |}5+\sqrt{3}\text{ |}}=\sqrt{35+5\sqrt{3}}\)
\(3.D=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=\sqrt{x-2+2.\sqrt{2}.\sqrt{x-2}+2}+\sqrt{x-2-2.\sqrt{2}.\sqrt{x-2}+2}=\text{ |}\sqrt{x-2}+\sqrt{2}\text{ |}+\text{ |}\sqrt{x-2}-\sqrt{2}\text{ |}=2\sqrt{x-2}\)
B1 a, Có n lẻ nên n = 2k+1(k E N)
Khi đó: n^2 + 7 = (2k+1)^2 +7
= 4k^2 + 4k + 8
= 4k(k+1) +8
Ta thấy k và k+1 là 2 số tự nhiên liên tiếp nên có ít nhất 1 số chia hết cho 2
=> k(k+1) chia hết cho 2 <=> 4k(k+1) chia hết cho 8
Mà 8 chia hết cho 8 <=> n^2 + 7 chia hết cho 8
a: Ta có: \(\sqrt{x^2-x+3}+7=10\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b: Ta có: \(\sqrt{x^2-4x+8}-7=-5\)
\(\Leftrightarrow x^2-4x+8=4\)
\(\Leftrightarrow x-2=0\)
hay x=2
Nếu 5 < x < 10 và y= x+5 thì giá trị của x +y có thể là số nguyên lớn nhất bao nhiêu ?
A . 18
B . 20
C . 23
D . 24
E . 25
đáp án : C23
9 + 14 = 23
a) \(\sqrt{x^2}=7\)
\(\Leftrightarrow\left|x\right|=7\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
b) \(\sqrt{\left(x-2020\right)^2}=10\)
\(\Leftrightarrow\left|x-2020\right|=10\)
\(\Leftrightarrow\orbr{\begin{cases}x-2020=10\\x-2020=-10\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2030\\x=2010\end{cases}}\)
c) đk: \(x\ge2\)
\(\sqrt{4}-\left(x-2\right)+3\sqrt{16x-32}=8\)
\(\Leftrightarrow2-x+2+12\sqrt{x-2}=8\)
\(\Leftrightarrow12\sqrt{x-2}=x+4\)
\(\Leftrightarrow144\left(x-2\right)=\left(x+4\right)^2\)
\(\Leftrightarrow x^2-136x+304=0\)
\(\Leftrightarrow\orbr{\begin{cases}x_1=133,726...\\x_2=2,273...\end{cases}}\)
d) đk: \(x\ge-1\)
\(\sqrt{25x+25}-2\sqrt{64x+64}=7\)
\(\Leftrightarrow5\sqrt{x+1}-16\sqrt{x+1}=7\)
\(\Leftrightarrow-11\sqrt{x+1}=7\)
Mà \(-11\sqrt{x+1}\le0< 7\left(\forall x\right)\)
=> pt vô nghiệm
\(a,\sqrt{x}< 5\Leftrightarrow x< 25\\ b,\sqrt{x}=10\Leftrightarrow x=100\\ c,\sqrt{x^2}=7\Leftrightarrow\left|x\right|=7\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\\ d,\sqrt{x^2}=\left|-8\right|\Leftrightarrow\left|x\right|=8\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
a) \(\sqrt{x}< 5\text{⇒}x< 25\)
b) \(\sqrt{x}=10\text{⇒}x=100\)
c) \(\sqrt{x^2}=7\text{⇒}x^2=49\text{⇒}x=+-7\)
d) \(\sqrt{x^2}=\left|-8\right|\text{⇒}x^2=64\text{⇒}x=+-8\)