K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2016

a/ Gọi p là USCLN của 3n+13 và 3n+13 => 3n+13 và 3n+14 chia hết cho p

=> 3n+14-(3n+13)=1 cũng chia hết cho p => p=1 => 3n+13 và 3n+14 là số nguyên tố cùng nhau vì có USCLN=1

b/ Gọi p là USCLN của n+2 và 2n+3 => n+2 và 2n+3 chia hết cho p

n+2 chia hết cho p => 2n+4 cũng chia hết cho p => (2n+4)-(2n+3)=1 cũng chia hết cho p => p=1

=> n+2 và 2n+3 là số nguyên tố cùng nhau vì có USCLN=1

Các bài khác làm tương tự

21 tháng 11 2016

(6n+5)\(⋮\)(n+2)

6n+12-7\(⋮\)n+2

6(n+2)-7\(⋮\)n+2

Vì (n+2)\(⋮\)(n+2)=>6(n+2)\(⋮\)(n+2)

Buộc 7\(⋮\)n+2=>n+2ϵƯ(7)={1;7}

Với n+2=1=>n= -1

Với n+2=7=>n=5

Vậy n=5

21 tháng 11 2016

(3n+2)\(⋮\)(2n+3)

6n+9-7\(⋮\)(2n+3)

3(2n+3)-7\(⋮\)(2n+3)

Vì 3(2n+3)\(⋮\)(2n+3)

Buộc 7\(⋮\)2n+3=>2n+3ϵƯ(7)={1;7}

Với 2n+3=1=>2n= -2=>n= -1

Với 2n+3=7=>2n=4=>n=2

Vậy n=2

28 tháng 2 2017

a) Gọi \(d\)là ước chung của \(n+3;n+4\)

\(\Rightarrow n+3⋮d\)và \(n+4⋮d\)

\(\Rightarrow n+3-\left(n+4\right)⋮d\)

\(\Rightarrow n+3-n-4⋮d\)

\(\Rightarrow-1⋮d\Rightarrow d=-1;1\)

Tử và mẫu chỉ có ước chung là -1;1 nên phân số \(\frac{n+3}{n+4}\)là phân số tối giản (đpcm)

27 tháng 2 2020

a) 3n + 7::5n - 2 

Gọi d là ƯC 3n + 7::5n - 2

\(\hept{\begin{cases}3n+7:d\\5n-2:d\end{cases}}->\hept{\begin{cases}5\left(3n+7\right):d\\3\left(5n-2\right):d\end{cases}}\)

=> 5(3n+7)-3(5n-2):d

      15n+7-15n-2-d

           22n-13n-d

                 9:d=>d=6

b) Tương tự 

2 tháng 2 2018

hơi dài đấy 3

a,

2n+1\(⋮\)2n-3

2n-3+4\(⋮\)2n-3

\(_{\Rightarrow}\)4\(⋮\)2n-3

2n-3\(\in\)Ư(4)=(1;4;2;-1;-4;-2)

2n-3124-1-2-4
2n45721-1
n2  1  

vậy n\(\in\)(2;1)

b;

3n+2\(⋮\)3n-4

3n-4+6\(⋮\)3n-4

=>6\(⋮\)3n-4

3n-4\(\in\)Ư(6)=(1;2;3;6;-1;-2;-3;-6)

3n-41236-1-2-3-6
3n56710321-2
n 3 5 1 -1

vậy n\(\in\)(3;5;-1;1)

`@` `\text {Ans}`

`\downarrow`

`a)`

\(2^{n+3}\cdot5^{n+3}=20^9\div2^9\)

`=>`\(\left(2\cdot5\right)^{n+3}=\left(20\div2\right)^9\)

`=>`\(10^{n+3}=10^9\)

`=>`\(n+3=9\)

`=> n = 9 - 3`

`=> n= 6`

Vậy, `n=6`

`b)`

\(3^{n+5}-3^{n+4}=1458\)

`=> 3^n*3^5 - 3^n*3^4 = 1458`

`=> 3^n*(3^5 - 3^4) = 1458`

`=> 3^n*162 = 1458`

`=> 3^n = 1458 \div 162`

`=> 3^n = 9`

`=> 3^n = 3^2`

`=> n=2`

Vậy, `n=2.`

`c)`

\(5^{n+3}+5^{n+2}=3750\)

`=> 5^n*5^3 + 5^n*5^2 = 3750`

`=> 5^n*(5^3+5^2) = 3750`

`=> 5^n*150 = 3750`

`=> 5^n = 3750 \div 150`

`=> 5^n =25`

`=> 5^n = 5^2`

`=> n=2`

Vậy, `n=2.`

`d)`

\(\dfrac{2}{7}x+\dfrac{3}{14}x=\dfrac{1}{2}\)

`=> 1/2x = 1/2`

`=> x = 1/2 \div 1/2`

`=> x=1`

Vậy, `x=1`

`e)`

\(\dfrac{x+2}{-3}=\dfrac{-2}{x+3}\)

`=> (x+2)(x+3) = -3*(-2)`

`=> (x+2)(x+3) = -6`

`=> x(x+3) + 2(x+3) = -6`

`=> x^2 + 3x + 2x + 6 = -6`

`=> x^2 + 5x + 6 - 6 = 0`

`=> x^2 + 5x = 0`

`=> x(x+5) = 0`

`=>`\(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy, `x \in {0; -5}`

`@` `\text {Kaizuu lv u}`