Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-1\right)\left(x^2+x+1\right)=x\left(x^2+x+1\right)-\left(x^2+x+1\right)\)
\(=x^3+x^2+x-x^2-x-1=x^3-1\) đpcm
b) \(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)=\left(x-y\right)\left[x\left(x^2+y^2\right)+y\left(x^2+y^2\right)\right]\)
\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)\) đpcm
a) Ta có: \(\left(x-1\right)\left(x^2+x+1\right)\)
\(=x\left(x^2+x+1\right)\)\(-\left(x^2+x+1\right)\)
\(=x^3+x^2+x-x^2-x-1\)
\(=x^3-1\)
Vậy \(\left(x-1\right)\left(x^2+x+1\right)\)\(=x^3-1\)(đpcm)
b) Ta có: \(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)
\(=x\left(x^3+x^2y+xy^2+y^3\right)\)\(-y\left(x^3+x^2y+xy^2+y^3\right)\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)
\(=x^4-y^4\)
Vậy\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)\(=x^4-y^4\)(đpcm)
Bài làm :
\(\text{a) }\left(x-1\right)\left(x^2+x+1\right)\)
\(=x\left(x^2+x+1\right)-\left(x^2+x+1\right)\)
\(=x^3+x^2+x-x^2-x-1\)
\(=x^3-1\)
=> Điều phải chứng minh
\(\text{b)}\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)
\(=x\left(x^3+x^2y+xy^2+y^3\right)-y\left(x^3+x^2y+xy^2+y^3\right)\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)
\(=x^4-y^4\)
=> Điều phải chứng minh
1. \(125x^3+y^6=\left(5x\right)^3+\left(y^2\right)^3\)
\(=\left(5x+y^2\right)\left[\left(5x\right)^2-5x.y^2+\left(y^2\right)^2\right]\)
\(=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)
2. \(4x\left(x-2y\right)+8y\left(2y-x\right)\)
\(=4x\left(x-2y\right)-8y\left(x-2y\right)\)
\(=\left(x-2y\right)\left(4x-8y\right)\)
3. \(25\left(x-y\right)^2-16\left(x+y\right)^2\)
\(=\left[5\left(x-y\right)\right]^2-\left[4\left(x+y\right)\right]^2\)
\(=\left[5\left(x-y\right)-4\left(x+y\right)\right]\left[5\left(x-y\right)+4\left(x+y\right)\right]\)
\(=\left(5x-5y-4x-4y\right)\left(5x-5y+4x+4y\right)\)
\(=\left(x-9y\right)\left(9x-y\right)\)
4. \(x^4-x^3-x^2+1\)
\(=x^3\left(x-1\right)-\left(x^2-1\right)\)
\(=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x^3-x-1\right)\)
5. \(a^3x-ab+b-x\)
\(=a^3x-x-ab+b\)
\(=x\left(a^3-1\right)-b\left(a-1\right)\)
\(=x\left(a-1\right)\left(a^2+a+1\right)-b\left(a-1\right)\)
\(=\left(a-1\right)\left[x\left(a^2+a+1\right)-b\right]\)
6. \(x^3-64=x^3-4^3\)
\(=\left(x-4\right)\left(x^2+4x+16\right)\)
7. \(0,125\left(a+1\right)^3-1\)
\(=\left[0,5\left(a+1\right)\right]^3-1^3\)
\(=\left[0,5\left(a+1\right)-1\right]\left\{\left[0,5\left(a+1\right)\right]^2+\left[0,5\left(a+1\right).1\right]+1^2\right\}\)
\(=\left[0,5\left(a+1-2\right)\right]\left[0,25a^2+0,5a+0,25+0,5a+0,5+1\right]\)
\(=\left[0,5\left(a-1\right)\right]\left(0,25a^2+a+1,75\right)\)
8. \(9\left(x+5\right)^2-\left(x-7\right)^2\)
\(=\left[3\left(x+5\right)\right]^2-\left(x-7\right)^2\)
\(=\left(3x+15-x+7\right)\left(3x+15+x-7\right)\)
\(=\left(2x+22\right)\left(4x+8\right)\)
9. \(49\left(y-4\right)^2-9\left(y+2\right)^2\)
\(=\left[7\left(y-4\right)\right]^2-\left[3\left(y+2\right)\right]^2\)
\(=\left(7y-28-3y-6\right)\left(7y-28+3y+6\right)\)
\(=\left(4y-34\right)\left(10y-22\right)\)
10. \(x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(xy-1\right)\)
11. \(x^3+3x^2+3x+1-27z^3\)
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)
12. \(x^2-y^2-x+y=\left(x-y\right)\left(x+y\right)-\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-1\right)\)
Câu b bài 1 :
B = x2x2 + x2x2 + x2y2 + x2y2 + x2y2 + y2y2 + y2
= ( x2x2 + x2y2 ) + ( x2x2 + x2y2 ) + ( x2y2 + y2y2 ) + y2
= x2( x2 + y2 ) + x2( x2 + y2 ) + y2( x2 + y2 ) + y2
= ( x2 + y2 ) (x2 + x2 + y2 ) + y2
= 1( x2 + 1) + y2
= x2 + y2 +1 = 2
a)\(VT=\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)+x\left(x-1\right)+\left(x-1\right)\)
\(=x^3-x^2+x^2-x+x-1\)
\(=x^3-1=VP\)
b)\(VT=\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)
\(=x^3\left(x-y\right)+x^2y\left(x-y\right)+xy^2\left(x-y\right)+y^3\left(x-y\right)\)
\(=x^4-x^3y+x^3y-x^2y^2+x^2y^2-xy^3+xy^3-y^4\)
\(=x^4-y^4\)
VP là j v??