Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Gọi \(d=ƯC\left(2n^2+3n+1;3n+1\right)\)
\(\Rightarrow2n^2+3n+1-\left(3n+1\right)⋮d\)
\(\Rightarrow2n^2⋮d\Rightarrow2n\left(3n+1\right)-3.2n^2⋮d\)
\(\Rightarrow2n⋮d\Rightarrow2\left(3n+1\right)-3.2n⋮d\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)
\(d=2\Rightarrow3n+1=2k\Rightarrow n=2m+1\)
\(\Rightarrow n\) lẻ thì A không tối giản
\(\Rightarrow n\) chẵn thì A tối giản
2.
Giả thiết tương đương:
\(xy^2+\dfrac{x^2}{z}+\dfrac{y}{z^2}=3\)
Đặt \(\left(x;y;\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a^2c+b^2a+c^2b=3\)
Ta có: \(9=\left(a^2c+b^2a+c^2b\right)^2\le\left(a^4+b^4+c^4\right)\left(c^2+a^2+b^2\right)\)
\(\Rightarrow9\le\left(a^4+b^4+c^4\right)\sqrt{3\left(a^4+b^4+c^4\right)}\)
\(\Rightarrow3\left(a^4+b^4+c^4\right)^3\ge81\Rightarrow a^4+b^4+c^4\ge3\)
\(\Rightarrow M=\dfrac{1}{a^4+b^4+c^4}\le\dfrac{1}{3}\)
\(M_{max}=\dfrac{1}{3}\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hay \(\left(x;y;z\right)=\left(1;1;1\right)\)
Giả sử E là số tự nhiên
Biến đổi E ta có :
\(E=\frac{3n^2}{2n^2+n-1}+\frac{1}{n+1}=\frac{3n^2}{\left(n+1\right)\left(2n-1\right)}+\frac{2n-1}{\left(n+1\right)\left(2n-1\right)}=\frac{3n^2+2n-1}{\left(n+1\right)\left(2n-1\right)}\)
\(=\frac{\left(n+1\right)\left(3n-1\right)}{\left(n+1\right)\left(2n-1\right)}=\frac{3n-1}{2n-1}\)
Do E là số tự nhiên \(\Rightarrow\left(3n-1\right)⋮\left(2n-1\right)\)
\(\Leftrightarrow2\left(3n-1\right)⋮\left(2n-1\right)\Rightarrow\left[2\left(3n-1\right)-3\left(2n-1\right)\right]⋮2n-1\)
\(\Leftrightarrow\left(6n-2-6n+3\right)⋮\left(2n-1\right)\Leftrightarrow1⋮\left(2n-1\right)\)
\(\Rightarrow2n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Xét \(2n-1=1\Rightarrow n=1\left(KTM:n>1;\text{loại}\right)\)
Xét \(2n-1=-1\Rightarrow n=0\left(KTM:n>1;\text{loại}\right)\)
Vậy ko có số tự nhiên n > 1 nào để \(\left(3n-1\right)⋮\left(2n-1\right)\) hay 3n - 1 ko chia hết cho 2n - 1
=> điều giả sử là sai hay E ko thể là số tự nhiên (đpcm)
Ta có \(n^4-3n^2+1=\left(n^4-2n^2+1\right)-n^2\)
\(=\left(n^2-1\right)^2-n^2\)
=(n^2-n-1)(n^2+n-1)
Để B là số nguyên tố thì
n^2-n-1=1,n^2+n-1 là số nguyên tố
=>n=2 thỏa mãn
Vậy n=2
a) Ta có: \(a=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
Đặt \(n^2+3n+1=t\)(1)
Khi đó: \(a=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)
\(\Rightarrow\) a là số chính phương
b) Để a=121 thì \(t^2=121\)\(\Rightarrow t=\pm11\)
+ Với t=11 thì (1) \(\Leftrightarrow n^2+3n+1=11\Leftrightarrow n^2+3n-10=0\)
\(\Leftrightarrow\left(n-2\right)\left(n+5\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}n=2\\n=-5\end{cases}}\)
+ Với n=-11 thì (1)\(\Leftrightarrow n^2+3n+1=-11\Leftrightarrow n^2+3n+12=0\)
\(\Leftrightarrow\left(n-\frac{3}{2}\right)^2+\frac{39}{4}=0\) ( vô lý)
Do đó, pt vo nghiệm
Vậy để a=121 thì n =2 hoặc n=-5
a) Để A có giá trị nguyên => n - 5 chia hết n + 1
=> n + 1 - 6 chia hết n + 1
Vì n + 1 chia hết n + 1
=> 6 chia hết n + 1
=> n + 1 thuộc Ư(6) = {........}
=> .......................Còn lại bạn tự làm nha!
b) Giả sử tử và mẫu cùng chia hết cho số nguyên tố d
=> n - 5 chia hết d và n + 1 chia hết d
=> ( n+1) - ( n - 5) chia hết d
=> 6 chia hết d => d = 2 ; 3 ( vì d là số nguyên tố)
=> Có 2 trường hợp .....tự làm nha
a,n-5/n-1=((n-1)-4)/n-1
=1-(4/n-1)
=> n-1 thuộc Ư(4) =>n-1 =1, -1, 2, -2, 4, -4
=>.......
Gọi 2 ps đó là a/b và c/d (ƯCLN (a,b) = 1; ƯCLN (c;d) = 1)
Ta có;
\(\frac{a}{b}+\frac{c}{d}=m\) (m thuộc Z)
=> \(\frac{ad+bc}{bd}=m\)
=> ad + bc = mbd (10
Từ (1) => ad + bc chia hết cho b
Mà bc chia hết cho b
=> ad chia hết cho b
Mà (a,b) = 1
=> d chia hết cho b (2)
Từ (1) => ad + bc chia hết cho d
Mà ad chia hết cho d
=> bc chia hết cho d
Mà (c,d) = 1
=> b chia hết cho d (3)
Từ (2) và (3) =>bh = d hoặc b = -d (đpcm)