K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

\(\left|x-1\right|\ge0\)

\(\left(y+2\right)^{2016}\ge0\)

=> \(\left|x-1\right|+\left(y+2\right)^{2016}=0\)

\(\Leftrightarrow\begin{cases}x-1=0\\y+2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=1\\y=-2\end{cases}\)

Có: \(2x^5-5y^3+2017=2\cdot1^5-5\cdot\left(-2\right)^3+2017=2059\)

22 tháng 10 2016

\(\left|x-1\right|+\left(y+2\right)^{2016}=0\)

Ta thấy: \(\hept{\begin{cases}\left|x-1\right|\ge0\\\left(y+2\right)^{2016}\ge0\end{cases}}\)

\(\Rightarrow\left|x-1\right|+\left(y+2\right)^{2016}\ge0\)

\(\Rightarrow\hept{\begin{cases}\left|x-1\right|=0\\\left(y+2\right)^{2016}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

\(\Rightarrow A=2x^5-5y^3+2017=2\cdot1^5-5\cdot\left(-2\right)^3+2017=2059\)

30 tháng 7 2019

hơi dài mà lười nên mình nói cách làm nha :P

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow xy+yz+xz=0\)

bạn cm \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}=0\)

tách: \(x^2+2yz=x^2+yz-xy-xz=\left(x-z\right).\left(x-y\right)\), mấy cái khác tương tự 

quy đồng rồi tính ra = 0 là được 

21 tháng 12 2016

mơn em iu nhìu nhắm nak.

21 tháng 12 2016

shit ~ pate tăng động -_-

12 tháng 11 2017

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Ta thấy \(VT\ge VP\forall x;y\) để đấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\) thay vào M :

\(M=\left(-1+1\right)^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}=1\)

28 tháng 3 2020

\(\Leftrightarrow4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Vậy M=1