K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2017

a)\(\left|x-5\right|-x=3\)

\(TH1:x-5-x=3\)

           \(-5=3\)(ko xảy ra)

            \(xkoTM\)

\(TH2:-\left(x-5\right)-x=3\)

            \(5-x-x=3\)

            \(5-2x=3\)

             \(2x=2\)

             x=1

Vậy x=1

16 tháng 3 2017

x = 1

ai tk mình mình tk lại cho

6 tháng 11 2016

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

6 tháng 11 2016

trị tuyệt đối phải bằng dương chứ sao bằng âm được

2 tháng 10 2015

d, 5 - | x - 2 | = 3

| x - 2 | = 5 - 3 = 2

=> TH1: x - 2 = 2

=> x = 4

TH2: x - 2 = -2

=> x = 0 

=> x có 2 nghiệm { 0; 4 }

NM
6 tháng 9 2021

ta có 

\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)

Dấu bằng xảy ra khi \(-5\le x\le-2\)

\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)

Dấu bằng xảy ra khi \(x=2\)

\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)

Dấu bằng xảy ra khi \(x\ge2\)

3 tháng 8 2023

Nguyễn Minh Quang sai dấu câu A rồi

 

9 tháng 7 2016

\(b,B\left(x\right)=x\left(x-3\right)-2\left(x+5\right)=x^2-3x-2x-10=x^2-5x-10\)

\(=x^2-\frac{5}{2}x-\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}-10=x\left(x-\frac{5}{2}\right)-\frac{5}{2}\left(x-\frac{5}{2}\right)-\frac{65}{4}\)

\(=\left(x-\frac{5}{2}\right)^2-\frac{65}{4}\)

\(\left(x-\frac{5}{2}\right)^2\ge0=>\left(x-\frac{5}{2}\right)^2-\frac{65}{4}\ge-\frac{65}{4}\) (với mọi x)

Dấu "=" xảy ra \(< =>x-\frac{5}{2}=0< =>x=\frac{5}{2}\)

Vậy minB(x)=-65/4 khi x=5/2

\(c,C\left(x\right)=2x\left(x+1\right)-3x\left(x+1\right)=2x^2+2x-3x^2-3x=-x^2-x\)

\(=-\left(x^2+x\right)=-\left(x^2+x+1-1\right)=-\left(x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}-1\right)\)

\(=-\left[x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)-\frac{1}{4}\right]=-\left[\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\right]=\frac{1}{4}-\left(x+\frac{1}{2}\right)^2\)

\(\left(x+\frac{1}{2}\right)^2\ge0=>\frac{1}{4}-\left(x+\frac{1}{2}\right)^2\le\frac{1}{4}\) (với mọi x)

Dấu  "=" xảy ra \(< =>x+\frac{1}{2}=0< =>x=-\frac{1}{2}\)

Vậy maxC(x)=1/4 khi x=-1/2

9 tháng 7 2016

\(A\left(x\right)=2x\left(x-1\right)-3\left(x-13\right)=2x^2-5x+39\)

\(=2\left(x^2-\frac{5}{2}x+\frac{39}{2}\right)=2\left(x^2-\frac{5}{4}x-\frac{5}{4}x+\frac{25}{16}-\frac{25}{16}+\frac{39}{2}\right)\)

\(=2\left[x\left(x-\frac{5}{4}\right)-\frac{5}{4}\left(x-\frac{5}{4}\right)\right]+\frac{287}{16}=2\left[\left(x-\frac{5}{4}\right)^2+\frac{287}{16}\right]=2\left(x-\frac{5}{4}\right)^2+\frac{287}{8}\)

\(2\left(x-\frac{5}{4}\right)^2\ge0=>2\left(x-\frac{5}{4}\right)^2+\frac{287}{8}\ge\frac{287}{8}>0\) với mọi x

=>A(x) vô nghiệm (đpcm)

5 tháng 7 2018

1,

a,

Ta có:

|x-2,1|=3/2

TH1: x-2,1=3/2

=> x=-3/5

TH2: 2,1-x=3/2

=> x=3/5

b, (x + 5) . (2x - 3) = 0

=> \(\orbr{\begin{cases}x+5=0\\2x-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{3}{2}\end{cases}}\)

2,

a, A = 2 | 2 - 5x | - 4/6

b, B = | x - 1/2 | + | y - 3/4 | - 1,5

Giải:

a,

Ta có: \(\left|\text{ 2-5x}\right|\ge0\Rightarrow2.\left|2-5x\right|\ge0\)

\(\Rightarrow2.\left|2-5x\right|-\frac{4}{6}\ge-\frac{4}{6}\)

Dấu '=' xảy ra khi 2.|2-5x|=0

=> \(x=\frac{2}{5}\)

Min A=-4/6 khi và chỉ khi x=2/5

b, B = | x - 1/2 | + | y - 3/4 | - 1,5

Tương tự Min B= -1,5 khi và chỉ khi x=... y=... tự giải

5 tháng 7 2018

Câu 3:

a,

Ta có:

\(\frac{1}{2}.\left|5-x\right|\ge0\)

=> \(7-\frac{1}{2}\left|5-x\right|\le7\)

Dấu '=' xảy ra khi

|5-x|=0

=> x=5

câu b tương tự

2 tháng 1 2018

a, \(A=\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)

Dấu "=" xảy ra khi \(\left(x-1\right)\left(2-x\right)\ge0\Leftrightarrow1\le x\le2\)

Vậy GTNN của A = 1 khi \(1\le x\le2\)

b, \(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=\left(\left|x-1\right|+\left|x-3\right|\right)+\left|x-2\right|\)

Ta có: \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\)

Mà \(\left|x-2\right|\ge0\)

\(\Rightarrow B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\ge2+0=2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\\left|x-2\right|\ge0\end{cases}\Rightarrow x=2}\)

Vậy GTNN của B = 2 khi x = 2

c, \(C=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\)

\(=\left(\left|x-1\right|+\left|3-x\right|\right)+\left(\left|x-2\right|+\left|4-x\right|\right)\)

\(\ge\left|x-1+3-x\right|+\left|x-2+4-x\right|\)

\(\ge2+2=4\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(4-x\right)\ge0\end{cases}\Rightarrow\hept{\begin{cases}1\le x\le3\\2\le x\le4\end{cases}\Rightarrow}2\le x\le}3\)

Vậy GTNN của C = 4 khi \(2\le x\le3\)

2 tháng 1 2018

bài lớp mấy đây ?

3 tháng 1 2017

Gọi \(A=3.\left|x+\frac{-2}{5}\right|+\frac{5}{2}\)

Ta có :   \(\left|x+\frac{-2}{3}\right|\ge0\)

         \(3.\left|x+\frac{-2}{3}\right|\ge0\)

\(3.\left|x+\frac{-2}{3}\right|+\frac{5}{2}\ge\frac{5}{2}\)

\(\Rightarrow Min_A=\frac{5}{2}\)

\(\Leftrightarrow3.\left|x+\frac{-2}{3}\right|=0\)

\(\Leftrightarrow\left|x+\frac{-2}{5}\right|=0\)

\(\Leftrightarrow x+\frac{-2}{5}=0\)

\(\Leftrightarrow x=\frac{2}{5}\)

26 tháng 3 2022

`Answer:`

1. 

Do \(\left|x-\frac{2}{5}\right|\ge0\forall x\)

\(\Rightarrow3.\left|x-\frac{2}{5}\right|\ge0\forall x\)

\(\Rightarrow3.\left|x-\frac{2}{5}\right|+\frac{5}{2}\ge\frac{5}{2}\forall x\)

Dấu "=" xảy ra khi \(\left|x-\frac{2}{5}\right|=0\Leftrightarrow x-\frac{2}{5}=0\Leftrightarrow x=\frac{2}{5}\)

Vậy \(3.\left|x-\frac{2}{5}\right|+\frac{5}{2}\) đạt giá trị nhỏ nhất \(=\frac{5}{2}\Leftrightarrow x=\frac{2}{5}\)

2. 

Do \(\left|x-\frac{1}{2}\right|\ge0\forall x\)

\(\Rightarrow\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow A\ge\frac{3}{4}\)

Dấu "=" xảy ra khi \(\left|x-\frac{1}{2}\right|=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

Vậy giá trị nhỏ nhất của \(A=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)