Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)
\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)
\(\Rightarrow2\cdot\frac{x-1}{2x+2}=\frac{2009}{2011}\)
\(\Rightarrow\frac{2x-2}{2x+2}=\frac{2009}{2011}\)
Bạn làm nốt.Nhân chéo là ra
\(\left(x-1\right)f\left(x\right)=\left(x+4\right)\cdot f\left(x+8\right)\)
Với \(x=1\) ta có:
\(\left(1-1\right)\cdot f\left(1\right)=\left(1+4\right)\cdot f\left(9\right)\)
\(\Rightarrow5\cdot f\left(9\right)=0\)
\(\Rightarrow f\left(9\right)=0\)
Vậy \(x=9\)
Thay \(x=-4\) vào ta được:
\(\left(-4-1\right)\cdot f\left(-4\right)=0\cdot f\left(4\right)\)
\(\Rightarrow f\left(-4\right)=0\)
Vậy \(x=-4\)
\(\Rightarrow f\left(x\right)\) có ít nhất 2 nghiệm là 9;-4
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
Anh chỉ giải câu a thôi, câu b anh thấy nó bình thường mà.
Cộng vào mỗi phân số thêm 1 đơn vị được:
\(\frac{x+2013}{2009}+\frac{x+2013}{2010}=\frac{x+2013}{2011}+\frac{x+2013}{2012}\).
Tới đây tự làm tiếp nhá.
\(f\left(\frac{1}{3}\right)+2f\left(\frac{1}{\frac{1}{3}}\right)=\left(\frac{1}{3}\right)^2\Rightarrow f\left(\frac{1}{3}\right)+2f\left(3\right)=\frac{1}{9}\)(1)
\(f\left(3\right)+2f\left(\frac{1}{3}\right)=3^2\Rightarrow2f\left(3\right)+4f\left(\frac{1}{3}\right)=18\)(2)
Từ (1) và (2) \(\Rightarrow2f\left(3\right)+4f\left(\frac{1}{3}\right)-f\left(\frac{1}{3}\right)-2f\left(3\right)=18-\frac{1}{9}\)
\(\Rightarrow3f\left(\frac{1}{3}\right)=\frac{161}{9}\Rightarrow f\left(\frac{1}{3}\right)=\frac{161}{27}\)