K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2016

150 + 1,03 : [ 10,3 . ( x - 1 ) ] = 160

         1,03 : [ 10,3 . ( x - 1 ) ] = 160 - 150

         1,03 : [ 10,3 . ( x - 1 ) ] = 10 

                  [ 10,3 . ( x - 1 ) ] = 1,03 : 10

                  [ 10,3 . ( x - 1 ) ] = 0,103

                              ( x - 1 )  = 0,103 : 10,3

                              ( x - 1 )   =  0,01

                                x           = 0,01 + 1

                                 x          = 1,01

3 tháng 7 2016

b) Từ đề bài ,ta có: \(\hept{\begin{cases}\frac{-\left(x+3\right)}{27}=\frac{-121}{33}\left(1\right)\\\frac{11}{1-2y}=\frac{-121}{33}\left(2\right)\end{cases}}\)

Giải (1):

\(\frac{-\left(x+3\right)}{27}=\frac{-121}{33}=>-\left(x+3\right)=-121.27:33=-99=>-x-3=-99=>-x=-96=>x=96\)

Giải (2) :

\(\frac{11}{1-2y}=\frac{-121}{33}=>1-2y=11.33:\left(-121\right)=-3=>2y=4=>y=2\)

Vậy x=96;y=2

11 tháng 10 2016

Ta có: \(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{x+2y-z}{5+6-4}=\frac{-121}{7}\)

\(\Rightarrow\begin{cases}x=\frac{-121}{7}.5=\frac{-605}{7}\\y=\frac{-121}{7}.3=\frac{-363}{7}\\z=\frac{-121}{7}.4=\frac{-484}{7}\end{cases}\)

Vậy \(x=\frac{-605}{7};y=\frac{-363}{7};z=\frac{-484}{7}\)

1. Gọi độ dài 3 cạnh tam giác lần lượt là a,b,c.(có hay ko cx đc, vì trg hợp này đề bài cho sẵn r)(a,b,c \(\inℕ^∗\))

Do cạnh a ngắn hơn cạnh c 8cm nên c-a=8 (cm)

Độ dài 3 cạnh ta, giác tỉ lệ vs 3;4;5 nên \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)

Ap dụng tính chất dãy tỉ số bằng nhau,ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{c-a}{5-3}=\frac{8}{2}=4\)

\(\Rightarrow\hept{\begin{cases}a=4.3=12\\b=4.4=16\\c=4.5=20\end{cases}}\)

Vậy;....

28 tháng 6 2019

2. 

a, x:y:z = 5:3:4 => \(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{5+6-4}=-\frac{121}{7}\)

\(\frac{x}{5}=-\frac{121}{7}\Rightarrow x=-\frac{605}{7}\)

\(\frac{y}{3}=\frac{-121}{7}\Rightarrow y=-\frac{363}{7}\)

\(\frac{z}{4}=-\frac{121}{7}\Rightarrow z=-\frac{484}{7}\)

Vậy ... 

b, 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\) ; 3y = 5z => \(\frac{y}{5}=\frac{z}{3}\)

=> \(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\)

Áp dụng tính chất dãy tỉ số  bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{2+5+3}=-\frac{970}{10}=-97\)

\(\frac{x}{2}=-97\Rightarrow x=-97.2=-194\)

\(\frac{y}{5}=-97\Rightarrow y=-97.5=-485\)

\(\frac{z}{3}=-97\Rightarrow z=-97.3=291\)

Vậy ...

1: Ta có: \(\dfrac{x}{3}=\dfrac{y}{6}\)

mà 4x-y=42

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{3}=\dfrac{y}{6}=\dfrac{4x-y}{4\cdot3-6}=\dfrac{42}{12-6}=\dfrac{42}{6}=7\)

=>\(x=7\cdot3=21;y=6\cdot7=42\)

2: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

mà x-2y+3z=33

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-2y+3z}{2-2\cdot3+3\cdot5}=\dfrac{33}{2-6+15}=\dfrac{33}{11}=3\)

=>\(x=3\cdot2=6;y=3\cdot3=9;z=3\cdot5=15\)

3: \(\dfrac{x}{y}=\dfrac{6}{5}\)

=>\(\dfrac{x}{6}=\dfrac{y}{5}\)

mà x+y=121

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{6}=\dfrac{y}{5}=\dfrac{x+y}{6+5}=\dfrac{121}{11}=11\)

=>\(x=11\cdot6=66;y=11\cdot5=55\)