Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a) để A là số hữu tỉ thì 2n+3 nguyên và n - 1 khác 0
từ hai điều kiện trên suy ra n nguyên và n khác 1
b) để A nguyên thì 2n+3 ⋮ n - 1
⇒ 2(n - 1) +5 ⋮ n - 1
⇒ 5 ⋮ n - 1
⇒n ∈ {-4; 0; 2; 6}
2. x < y ⇔ \(\dfrac{a}{n}< \dfrac{b}{n}\)
\(\Rightarrow\dfrac{2a}{2n}< \dfrac{a+b}{2n}< \dfrac{2b}{2n}\Leftrightarrow x< z< y\)
A= \(\dfrac{3x+2}{x-3}\)= \(\dfrac{3\left(x-3\right)+11}{x-3}\)= 3 + \(\dfrac{11}{x-3}\)
Để A là số nguyên <=> \(\dfrac{11}{x-3}\) là số nguyên
<=> 11 chia hết cho x-3
<=> x-3 thuộc Ư(11)
Ta có bảng sau
x-3 | 1 | -1 | 11 | -11 |
x | 4 | 2 | 14 | -8 |
Vậy x thuộc { 4;2;14;-8}
a, A= \(\dfrac{3x+2}{x-3}\)
Để A là số nguyên⇒ 3x+ 2⋮ x- 3
Vì x- 3⋮ x- 3
⇒ 3.(x- 3)⋮ x- 3
⇒ 3x- 3.3⋮ x-3
⇒ 3x- 9⋮ x-3
Mà 3x+ 2⋮ x-3
⇒ ( 3x+ 2)- ( 3x- 9)⋮ x-3
⇒ 3x+ 2- 3x+ 9⋮ x-3
⇒ ( 3x- 3x)+ ( 2+ 9)⋮ x- 3
⇒ 11⋮ x- 3
⇒ x- 3∈ Ư(11)
⇒ x- 3∈ ( -11; -1; 1; 11)
⇒ x∈ ( -8; 2; 4; 14)
Vậy....................
b, B= \(\dfrac{x^2+3x-7}{x+3}\)
Để B là số nguyên⇒ x2+3x-7 ⋮ x+3
Vì x+ 3⋮ x+ 3
⇒ x(x+3)⋮ x+ 3
⇒ x2+x.3⋮ x+ 3
Mà x2+ 3x- 7⋮ x+ 3
⇒ (x2+x.3)-( x2+3x-7)⋮ x+ 3
⇒ x2+ x.3- x2 -3x+ 7⋮ x+3
⇒ (x2-x2)+(3x- 3x)+ 7⋮ x+ 7
⇒ 7⋮ x+ 7
⇒ x+ 7∈ Ư(7)
⇒ x+ 7∈ (-7; -1; 1; 7)
⇒ x∈ ( -14; -8; -6; 0)
Vậy......................................
c, C= \(\dfrac{2x-1}{x+2}\)
Để C là số nguyên⇒ 2x-1⋮ x+2
Vì x+ 2⋮ x+2
⇒ 2( x+2)⋮ x+2
⇒ 2x+ 4⋮ x+2
Mà 2x- 1⋮ x+2
⇒ (2x+4)- (2x-1)⋮ x+2
⇒ 2x+ 4- 2x+ 1⋮ x+2
⇒ (2x-2x)+ (4+1)⋮ x+2
⇒ 5⋮ x+2
⇒ x+2∈ Ư(5)
⇒ x+2∈ (-5; -1; 1; 5)
⇒ x∈ ( -7; -3; -1; 3)
Vậy..........................................
Để \(P=\dfrac{2n-1}{n-1}\in Z\)
Thì \(2n-1⋮n-1\)
\(\Leftrightarrow\left(2n-2\right)+1⋮n-1\)
\(\Leftrightarrow2\left(n-1\right)+1⋮n-1\)
\(\Leftrightarrow1⋮n-1\)
\(\Leftrightarrow n-1\in U\left(1\right)=\left\{-1;1\right\}\)
\(\Leftrightarrow n\in\left\{0;2\right\}\)
Vậy \(n\in\left\{0;2\right\}\) thì \(P\in Z\)
\(A=\dfrac{2n-3}{n+4}=\dfrac{2n+8-11}{n+4}=\dfrac{2\left(n+4\right)-11}{n+4}=\dfrac{2\left(n+4\right)}{n+4}-\dfrac{11}{n+4}=2-\dfrac{11}{n+4}\)\(A\in Z\Rightarrow11⋮n+4\)
\(\Rightarrow n+4\inƯ\left(11\right)\)
\(Ư\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}n+4=1\Rightarrow n=-3\\n+4=-1\Rightarrow n=-5\\n+4=11\Rightarrow n=7\\n+4=-11\Rightarrow n=-15\end{matrix}\right.\)
ta có để A thuộc Z thì 2n-3/n+4 thuộc Z
=> 2n-3 chia hết cho n+4
mà 2n-3/n+4 = 2n+4-7/n+4
=> để 2n-3 chia hết cho n+4 thì 2n+4-7 chia hết cho n+4
=> 7 chia hết cho n+4
mà Ư(7)=(1;2;-1;-2)
có 4 trường hợp
th1: n+4=1 th2: n+4=2 th3: n+4= -1 th4: n+4= -2
n=1-4= -3 (chọn) n=2-4= -2 (chọn) n= -1-4=-5 (chọn) n=-2-4= -6 (chọn)
vậy n thuộc (-3;-2;-5;-6)
(xin lỗi: mình ko ghi được kí tự thuộc và chia hết do máy hư)
CHÚC BẠN HỌC TỐT!
Bài 1
1, Ta có \(A=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+....+\frac{10}{1400}\)
\(A=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(A=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+....+\frac{5}{25.28}\)
\(A=5.\left(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+....+\frac{1}{25.28}\right)\)
\(A=5.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(A=5.\left(\frac{1}{4}-\frac{1}{28}\right)=5.\frac{3}{14}=\frac{15}{14}\)
Vậy \(A=\frac{15}{14}\)
2,
a) \(A=\frac{2n-7}{n-5}=\frac{2n-7-3+3}{n-5}=\frac{\left(2n-10\right)+3}{n-5}=\frac{3}{n-5}\)
Suy ra để A có giá trị nguyên thì \(n-5\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
Khi đó \(n-5\in\left\{1;-1;3;-3\right\}\)
Suy ra \(n\in\left\{6;4;8;2\right\}\)
Vậy ......
b) Ta có : \(A=\frac{2n-7}{n-5}=\frac{2n-7-3+3}{n-5}=\frac{\left(2n-10\right)+3}{n-5}=2+\frac{3}{n-5}\)
Để A có giá trị lớn nhất \(\Leftrightarrow\frac{2n-7}{n-5}\)lớn nhất \(\Leftrightarrow2+\frac{3}{n-5}\)lớn nhất \(\Leftrightarrow\frac{3}{n-5}\)lớn nhất \(\Leftrightarrow n=6\)
Khi đó A = 5
Vậy A đạt GTLN khi và chỉ khi n = 6
\(\dfrac{2n+1}{n-1}=\dfrac{2n-2+3}{n-1}=\dfrac{2n-2}{n-1}+\dfrac{3}{n-1}=2+\dfrac{3}{n-1}\)
\(\Rightarrow3⋮n-1\Rightarrow n-1\inƯ\left(3\right)\)
\(Ư\left(3\right)=\left\{\pm1;\pm3\right\}\)
Xét ước
\(n^2+1⋮n+2\)
\(\Rightarrow n^2+2n-2n+1⋮n+2\)
\(\Rightarrow n^2+2n-2n-4+5⋮n+2\)
\(\Rightarrow n\left(n+2\right)-2\left(n+2\right)+5⋮n+2\)
\(\Rightarrow\left(n-2\right)\left(n+2\right)+5⋮n+2\)
\(\Rightarrow5⋮n+2\)
\(\Rightarrow n+2\inƯ\left(5\right)\)
\(Ư\left(5\right)=\left\{\pm1;\pm5\right\}\)
Xét ước
\(\dfrac{n^2-3n+2}{n+1}\)
\(\Rightarrow n^2-3n+2⋮n+1\)
\(\Rightarrow n^2+n-4n+2⋮n+1\)
\(\Rightarrow n^2+n-4n-4+6⋮n+1\)
\(\Rightarrow n\left(n+1\right)-4\left(n+1\right)+6⋮n+1\)
\(\Rightarrow\left(n-4\right)\left(n+1\right)+6⋮n+1\)
\(\Rightarrow6⋮n+1\Rightarrow n+1\inƯ\left(6\right)\)
\(Ư\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Xét ước