Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cosy Schwarz : \(\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}+\frac{a_3^2}{b_3}+...+\frac{a_n^2}{b_n}\ge\frac{\left(a_1+a_2+a_3+...+a_n\right)^2}{b_1+b_2+b_3+...+b_n}.\)(*)
với \(b_1=a_1^2;b_2=a_2^2;b_3=a_3^2;...;b_n=a_n^2\)ta có:
\(\frac{a_1^2}{a^2_1}+\frac{a_2^2}{a^2_2}+\frac{a_3^2}{a_3^2}+...+\frac{a_n^2}{a^2_n}\ge\frac{\left(a_1+a_2+a_3+...+a_n\right)^2}{a^2_1+a^2_2+a^2_3+...+a^2_n}.\)
\(n\ge\frac{\left(a_1+a_2+a_3+...+a_n\right)^2}{a^2_1+a^2_2+a^2_3+...+a^2_n}\Leftrightarrow\left(a_1+a_2+a_3+...+a_n\right)^2\le n\cdot\left(a^2_1+a^2_2+a^2_3+...+a^2_n\right)\)
Để đạt được dấu "=" thì \(a_1=a_2=a_3=...=a_n\).
Áp dụng bất đẳng thức Bunhiacopxki, ta được : \(\left(a_1+a_2+a_3+...+a_n\right)^2=\left(1.a_1+1.a_2+1.a_3+...1.a_n\right)^2\le\left(1^2+1^2+1^2+...+1^2\right)\left(a_1^2+a_2^2+a_3^2+...+a_n^2\right)=n.\left(a_1^2+a_2^2+a_3^2+...+a_n^2\right)\)
\(\Rightarrow\left(a_1+a_2+a_3+...+a_n\right)^2\le n\left(a_1^2+a_2^2+a_3^2+...+a_n^2\right)\)
Dấu đẳng thức xảy ra \(\Leftrightarrow\frac{a_1}{1}=\frac{a_2}{1}=\frac{a_3}{1}=...=\frac{a_n}{1}\Leftrightarrow a_1=a_2=a_3=...=a_n\)
Do đó, kết hợp với giả thiết của đê bài, ta được điều phải chứng minh.
1) A= 2a2b2+2a2c2+2b2c2-a^4-b^4-c^4
= 2a2b2+2a2c2+2b2c2-(a^4+b^4+c^4)
= 2a2b2+2a2c2+2b2c2 -[(a2+b2+c2)2+2a2b2+2a2c2+2b2c2 )
= 2a2b2+2a2c2+2b2c2 -(a2+b2+c2)2-2a2b2-2a2c2-2b2c2
= (a2+b2+c2)2 >0
\(A=5n^3+15n^2+10n\)
\(=5n\left(n^2+2\times n\times\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+2\right)\)
\(=5n\left[\left(n+\frac{3}{2}\right)^2-\frac{1}{4}\right]\)
\(=5n\left[\left(n+\frac{3}{2}\right)^2-\left(\frac{1}{2}\right)^2\right]\)
\(=5n\left(n+\frac{3}{2}+\frac{1}{2}\right)\left(n+\frac{3}{2}-\frac{1}{2}\right)\)
\(=5n\left(n+2\right)\left(n+1\right)\)
Tích của 3 số nguyên liên tiếp chia hết cho 6
=> A vừa chia hết cho 6 vừa chia hết cho 5
=> A chia hết cho 30 (đpcm)