Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các số là:
2035;2053;2305;2350;2503;2530;3025;3052;3205;3250;3502;3520;5023;5032;5203;5230;5302;5320
2035+2053+2305+2350+2503+2530+3025+3052+3205+3250+3502+3520+5023+5032+5203+5230+5302+5320=44563
a) Các số nguyên tố lớn hơn 5 sẽ có tận cùng là: 1, 3, 7.
Như vậy trong 5 số nguyên tố lớn hơn 5 sẽ có ít nhất hai có cùng chữ số tận cùng, suy ra hiệu hai số này chia hết cho 10.
b) Gọi số cần tìm là \(\overline{ab}\) (a,b là số nguyên tố).
Theo bài ra ta có: \(\overline{ab}.a.b=\overline{aaa}\) \(\Leftrightarrow\overline{ab}.a.b=b.111\) \(\Leftrightarrow\overline{ab}.a=3.37\).
Suy ra \(\hept{\begin{cases}a=3\\b=7\end{cases}}\).
Mình lm bài 3 nhá!!!
Bài 3:Chứng tỏ rằng:
a) n + 1 và n + 2 nguyên tố cùng nhau
Gọi UCLN ( n+1; n+2 ) = d
\(\Rightarrow\hept{\begin{cases}n+2⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow\left(n+2\right)-\left(n+1\right)⋮d\)
\(\Rightarrow n+2-n-1⋮d\Rightarrow1⋮d\)
\(\Rightarrow d=1\Rightarrow UCLN\left(n+2;+1\right)=1\)
Vậy n + 1 và n +2 là hai số nguyên tố cùng nhau
b) 2n + 3 và 3n + 4
Gọi UCLN ( 2n+3; 3n+4 ) = d
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+4\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d}\)
\(\Rightarrow6n+9-6n-8⋮d\Rightarrow1⋮d\)
\(\Rightarrow d=1\Rightarrow UCLN\left(2n+3;3n+4\right)⋮d\)
Vậy 2n + 3 và 3n + 4 là hai số nguyên tố cùng nhau.