Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M=2020+2020^2+...+2020^{10}\)
\(M=\left(2020+2020^2\right)+\left(2020^3+2020^4\right)+...+\left(2020^9+2020^{10}\right)\)
\(M=2020\left(1+2020\right)+2020^3\left(1+2020\right)+...+2020^9\left(1+2020\right)\)
\(M=2021\left(2020+2020^3+...+2020^9\right)⋮2021\).
b) Bạn làm tương tự câu a).
b, \(A=2021+2021^2+...+2021^{2020}\)
\(=2021\left(1+2021\right)+...+2021^{2019}\left(1+2021\right)\)
\(=2022\left(2021+...+2021^{2019}\right)⋮2022\)
Vậy ta có đpcm
a) Ta có: \(2019\equiv3\left(mod9\right)\)
=> \(A=2019^{2018}\equiv3^{2018}\equiv3^{2.1009}\equiv9^{1009}\equiv0\left(mod9\right)\)
=> A chia 9 dư 0
b) Ta có: \(2020\equiv10\left(mod15\right)\)
=> \(B=2020^{2019}\equiv10^{2019}\equiv10\left(mod15\right)\)
=> B chia 15 dư 10.
a) \(\left(2020^{2019}+1\right)\left(2020^{2019}-1\right)=\left(2020^{2019}\right)^2-1=2020^{4038}-1\)
Ta có: 2020 = 1 mod 3
\(\Rightarrow2020^{2019}\equiv1mod3\)
\(\Rightarrow2020^{4038}-1\equiv0mod3\)
=> đpcm
1/a/ Vì 32020= (34)504.34= A1 . 81
=> Chữ số tận cùng là 81.
b/ 42020=(44)504.44= A1 . 256
=> Chữ số tận cùng là 56.
c/ Vì 32020= (34)504.34= A1 . 81
=> Chữ số tận cùng là 81. (1)
Vì 52020=(54)504.54= A1 . 625
=> Chữ số tận cùng là 25 (2)
Từ (1) và (2) , suy ra:
Tổng 2 chữ số tận cùng của 32020 và 52020 là:
81 + 25 =106
=> Chữ số tận cùng là 06.
2/a/ Vì 3100=(34)23.35= A1 . 243
=> Chữ số tận cùng là 243.
b/ Vì 7200= (74)49. 74 = A1 . 2401
=> Chữ số tận cùng là 401.
A = \(2020^{2020}-317^{17}+213^{203}\)
Ta có: 2020 chia hết cho 5
317 chia 5 dư 2 => \(317^{17}\)có cùng số dư với \(2^{17}\)khi chia cho 5 mà \(2^{17}=2^{16}.2=4^8.2=16^4.2\) chia 5 sư 2
=> \(317^{17}\) chia 5 sư 2
\(213\)chia 5 dư 3 => \(213^{203}\)có cùng số dư với \(3^{203}\)khi chia cho 5 mà \(3^{203}=3^{202}.3=9^{101}.3=9^{100}.9.3=81^{50}.27\) chia 5 dư 2 vì \(81^{50}\)chia 5 dư 1 và 27 chia 5 dư 2
=> \(A\)chia 5 dư 0 - 2 + 2 = 0