Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n + 4 ⋮ n - 1 (1 ≠ n \(\in\) N)
n - 1 + 5 ⋮ n - 1
5 ⋮ n - 1
n - 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
Lập bảng ta có:
n - 1 | - 5 | -1 | 1 | 5 |
n | - 4 | 0 | 2 | 6 |
1 ≠ n \(\in\) N | loại | nhận | nhận | nhận |
Theo bảng trên ta có n \(\in\) {0; 2; 6}
Vậy n \(\in\) {0; 2; 6}
1/ A= 71+72+73+74+75+76\(⋮\)57
Ta có : 71+72+73+74+75+76= (71+72+73)+(74+75+76)
=7x(1+7+72)+74x(1+7+72)
=7x57+74x57
=57x(7+74)\(⋮\)57
4n+17
Vậy A \(⋮\)57
Phần 2 thiếu đề bài
3/ 4n+17\(⋮\)2n+3
=>4n+17-2x(2n+3)\(⋮\) 2n+3
=>4n+17-4n-6\(⋮\) 2n+3
=>11\(⋮\)2n+3
=>2n+3 \(\varepsilon\)Ư(11)
mà Ư(11) ={1;11}
Vì 2n+3 là số tự nhiên =>2n+3 =11
=>2n=11-3
=>2n=8
=>n=8 :2
=> n=4
Vậy n=4 thì ...
4/ 9n+17 \(⋮\)3n+2
=>9n+17-3x(3n+2)\(⋮\)3n+2
=>9n+17-9n-6\(⋮\)3n+2
=>11\(⋮\)3n+2
=>3n+2 \(\varepsilon\)Ư(11)
mà Ư(11)={1;11}
Vì 3n+2 là số tự nhiên => 3n+2>2
=>3n+2 =11
=>3n=11-2
=>3n=9
=>n=9:3
=>n=3
Vậy n=3 thì ...
Ai đó giúp mình đi
hu hu hu hu hu
ko ai giúp mình làm cmn bài tập này
nhớ giải theo công thức lớp 6 nha
giúp mình nha
2)
A = 2 + 22 + ... + 22004
A = ( 2 + 22 + 23 ) + ... + ( 22002 + 22003 + 22004 )
A = 2 . ( 1 + 2 + 22 ) + ... + 22002 . ( 1 + 2 + 22 )
A = 2 . 7 + ... + 22002 . 7
A = 7 . (2 + ... + 22002 ) chia hết cho 7
Bai 1:
a, 4n+5 chia hết n
Mà 4n chia hết n
=> 5 chia hết n
=> n thuộc Ư(5)={-5,-1,1,5}
=> n = -5,-1,1,5
b, n+5 chia hết n+1
=> n+1+4 chia hết n+1
Mà n+1 chia hết n+1
=> 4 chia hết n+1
=> n+1 thuộc Ư(4)={-4,-2,-1,1,2,4}
=> n=-5,-3,-2,0,1,3
2.
a) Ta có: \(\frac{n+6}{n}=\frac{n}{n}+\frac{6}{n}=1+\frac{6}{n}\)
Để n + 6 chia hết cho n thì \(\frac{6}{n}\) phải là số tự nhiên
\(\Rightarrow n\in\text{Ư}\left(6\right)=\left\{1;2;3;6\right\}\)
Vậy \(n\in\left\{1;2;3;6\right\}\)
c) Ta có: \(\frac{n+4}{n+1}=\frac{n+1+3}{n+1}=\frac{n+1}{n+1}+\frac{3}{n+1}=1+\frac{3}{n+1}\)
Để n + 4 chia hết cho n + 1 thì \(\frac{3}{n+1}\) phải là số tự nhiên
\(\Rightarrow n+1\in\text{Ư}\left(3\right)=\left\{1;3\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\)
Vậy \(n\in\left\{0;2\right\}\)