K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2019

b) B= 5x-10x+3-2

B = (5x2 - 2.5.1 . 12)-2

B = (5x-1)2-2 

ta có :

(5x-1)2 > 0 với mọi x thuộc R

(5x-1)-2 < -2

vậy B < -2

dấu = xảy ra <=> x = 1/5

mai tui lm nốt choa

30 tháng 6 2019

a)

\(A=4x^2-4x-1=4x^2-4x+1-2=\left(2x-1\right)^2-2\)

\(A\ge-2\forall x\in R\) 

Dấu "=" xảy ra <=>\(\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\) 

Vậy Amin =-2 tại x=1/2

1 tháng 8 2018

3)

e)

b) Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3

= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1

= (x-3y)2 + (2x -1)2 + (y-1)2 +1

Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0

(2x -1)2 luôn lớn hơn hoặc bằng 0

(y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0

1 tháng 8 2018

3)

b)-x^2+4x-5=-(x^2-4x+5)

=-(x^2-2.2x+2^2)-1

=-(x+2)^2-1

vì -(x+2) nhỏ hơn hoặc bằng 0 \(\forall x\)

=>-(x+2)^2-1<1 \(\forall\)x

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:

a)

\(A=4x^2-4x+1=2x(2x-3)+2x+1=2x(2x-3)+(2x-3)+4\)

\(=(2x+1)(2x-3)+4\)

Với \(x\geq \frac{3}{2}\Rightarrow \left\{\begin{matrix} 2x+1>0\\ 2x-3\geq 0\end{matrix}\right.\Rightarrow A=(2x+1)(2x-3)+4\geq 4\)

Vậy GTNN của $A$ là $4$ khi $x=\frac{3}{2}$

b)

\(B=5x^2-10x+3=5(x^2-2x+1)-2\)

\(=5(x-1)^2-2\)

Ta thấy \((x-1)^2\geq 0, \forall x\geq 1\Rightarrow B=5(x-1)^2-2\geq -2\)

Vậy GTNN của $B$ là $-2$ khi $(x-1)^2=0\Leftrightarrow x=1$

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

c)

\(C=4x^2-6x+2=(2x)^2-2.2x.\frac{3}{2}+(\frac{3}{2})^2-\frac{1}{4}\)

\(=(2x-\frac{3}{2})^2-\frac{1}{4}\)

Ta thấy \((2x-\frac{3}{2})^2\geq 0, \forall x\geq 0\Rightarrow C=(2x-\frac{3}{2})^2-\frac{1}{4}\geq -\frac{1}{4}\)

Vậy GTNN của $C$ là $\frac{-1}{4}$ khi \((2x-\frac{3}{2})^2=0\Leftrightarrow x=\frac{3}{4}\)

d)

\(D=3x^2+2x+1=3(x^2+\frac{2}{3}x+\frac{1}{9})+\frac{2}{3}\)

\(=3(x+\frac{1}{3})^2+\frac{2}{3}\)

Ta thấy \((x+\frac{1}{3})^2\geq 0, \forall x\geq -1\Rightarrow D=3(x+\frac{1}{3})^2+\frac{2}{3}\geq \frac{2}{3}\)

Vậy GTNN của $D$ là $\frac{2}{3}$ khi $(x+\frac{1}{3})^2=0\Leftrightarrow x=-\frac{1}{3}$

14 tháng 7 2017

Bài 1

a) \(A=\left(x+1\right)\left(2x-1\right)=2x^2+x-1=2\left(x^2+\frac{x}{2}-\frac{1}{2}\right)=2\left(x^2+2.\frac{1}{4}.x+\frac{1}{16}-\frac{9}{16}\right)\)\(=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\)

Vì \(\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)

Dấu "=" xảy ra khi \(\left(x+\frac{1}{4}\right)^2=0\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=-\frac{1}{4}\)

Vậy minA=-9/8 khi x=-1/4

b)\(B=4x^2-4xy+2y^2+1=\left(4x^2-4xy+y^2\right)+y^2+1=\left(2x-y\right)^2+y^2+1\)

Vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)=>\(\left(2x-y\right)^2+y^2\ge0\Rightarrow B=\left(2x-y\right)^2+y^2+1\ge1\)

Dấu "=" xảy ra khi (2x-y)2=y2=0 <=> 2x-y=y=0 <=> x=y=0

Vậy minB=1 khi x=y=0

14 tháng 7 2017

lý luận tương tự bài 1, bài này mình làm tắt

Bài 2:

a) \(C=5x-3x^2+2=-\left(3x^2-5x-2\right)=-3\left(x^2-\frac{5}{3}x-\frac{2}{3}\right)\)

\(=-3\left(x^2-2.\frac{5}{6}.x+\frac{25}{35}-\frac{49}{36}\right)=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{49}{36}\right]=\frac{49}{12}-3\left(x-\frac{5}{6}\right)^2\le\frac{49}{12}\)

Dấu "=" xảy ra khi x=5/6

b)\(D=-8x^2+4xy-y^2+3=3-\left(8x^2-4xy+y^2\right)=3-\left[\left(4x^2-4xy+y^2\right)+4x^2\right]\)

\(=3-\left[\left(2x-y\right)^2+4x^2\right]\le3\)

Dấu "=" xảy ra khi x=y=0

30 tháng 8 2018

a) \(A=\left(x+1\right)\left(2x-1\right)\)

\(A=2x^2+2x-x-1\)

\(A=2x^2+x-1\)

\(A=2\left(x^2+\dfrac{1}{2}x-\dfrac{1}{2}\right)\)

\(A=2\left(x^2+2.x\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{16}-\dfrac{1}{2}\right)\)

\(A=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\)

\(2\left(x+\dfrac{1}{4}\right)^2\ge0\) với mọi x

\(\Rightarrow2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)

\(\Rightarrow Amin=-\dfrac{9}{8}\Leftrightarrow x=-\dfrac{1}{4}\)

\(B=4x^2-4xy+2y^2+1\)

\(B=\left(2x\right)^2-2.2x.y+y^2+y^2+1\)

\(B=\left(2x-y\right)^2+y^2+1\)

\(\left(2x-y\right)^2\ge0\) với mọi x và y

\(y^2\ge0\) với mọi y

\(\Rightarrow\left(2x-y\right)^2+y^2+1\ge1\)

\(\Rightarrow Bmin=1\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

\(C=5x-3x^2+2\)

\(C=-\left(3x^2-5x-2\right)\)

\(C=-3\left(x^2-\dfrac{5}{3}x-\dfrac{2}{3}\right)\)

\(C=-3\left(x^2-2.x.\dfrac{5}{6}+\dfrac{25}{36}-\dfrac{25}{36}-\dfrac{2}{3}\right)\)

\(C=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{49}{12}\)

\(-3\left(x-\dfrac{5}{6}\right)^2\le0\) với mọi x

\(\Rightarrow-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{49}{12}\le\dfrac{49}{12}\)

\(\Rightarrow Cmax=\dfrac{49}{12}\Leftrightarrow x=\dfrac{5}{6}\)

\(D=-8x^2+4xy-y^2+3\)

\(D=-\left(4x^2-4xy+y^2\right)-4x^2+3\)

\(D=-\left(2x-y\right)^2-4x^2+3\)

\(-\left(2x-y\right)^2\le0\) với mọi x và y

\(-4x^2\le0\) với mọi x

\(\Rightarrow-\left(2x-y\right)^2-4x^2+3\le3\) với mọi x và y

\(\Rightarrow Dmax=3\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

\(E=x^2-8x+38\)

\(E=x^2-2.x.4+16+22\)

\(E=\left(x-4\right)^2+22\)

\(\left(x-4\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-4\right)^2+22\ge22\) với mọi x

\(\Rightarrow Emin=22\Leftrightarrow x=4\)

\(F=6x-x^2+1\)

\(F=-\left(x^2-6x-1\right)\)

\(F=-\left(x^2-2.x.3+9-9-1\right)\)

\(F=-\left(x-3\right)^2+10\)

\(-\left(x-3\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x-3\right)^2+10\le10\)

\(\Rightarrow Fmax=10\Leftrightarrow x=3\)

12 tháng 7 2018

1/

a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x=1/2

Vậy Amin=4 khi x=1/2

b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x=-1

Vậy Bmin = -4 khi x=-1

2/

a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)

Dấu "=" xảy ra khi x=3

Vậy Amax = 19 khi x=3

b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmax = 31/8 khi x=5/4