Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A lớn nhất thì:
3-y = 0 Và x-y = 0
=> y =x = 3
=> GTLN của A là 2013 - I3 - 3I - (3 - 3)2
= 2013 - 0
= 2013
Vậy GTLN của A là 2013
\(A=2013-\left|3-y\right|-\left(x-y\right)^2\)
Vì \(\left|3-y\right|\ge0;\left(x-y\right)^2\ge0\)
\(\Rightarrow A\le2013\Rightarrow A_{max}=2013\)
\(\Leftrightarrow\hept{\begin{cases}3-y=0\\x-y=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=3\\x=3\end{cases}}}\)
Nhận thấy \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)
=> \(\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\forall x\)
Dấu "=" xảy ra <=> \(2x+\frac{1}{3}=0\Rightarrow x=-\frac{1}{6}\)
Vậy Min A = -1 <=> X = -1/6
a, \(\left(2x+\frac{1}{3}\right)^{44}\ge0\forall x\)
\(\Rightarrow\left(2x+\frac{1}{3}\right)^{44}-1\ge-1\)
Dấu "=" xảy ra <=> 2x+1/3=0 <=> x= -1/6
2 câu là tìm GTNN đúng hông bạn :)
\(a)\) Ta có :
\(\left(x-1\right)^2\ge0\)
\(\Rightarrow\)\(A=2000\left(x-1\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(x-1=0\)
\(\Leftrightarrow\)\(x=1\)
Vậy GTNN của \(A\) là \(0\) khi \(x=1\)
\(b)\) Ta có :
\(\left|x-3\right|\ge0\)
\(\Rightarrow\)\(B=\left|x-3\right|+5\ge5\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|x-3\right|=0\)
\(\Leftrightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Vậy GTNN của \(B\) là \(5\) khi \(x=3\)
Chúc bạn học tốt ~
a) \(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow A\ge-1\)
Dấu \(=\)xảy ra khi \(2x+\frac{1}{3}=0\Leftrightarrow x=-\frac{1}{6}\).
b) \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\Rightarrow B\le3\)
Dấu \(=\)xảy ra khi \(\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow x=\frac{3}{10}\).